
JCIFS

JCIFS Component

Available as of Camel 2.11.0

This component provides access to remote file systems over the CIFS/SMB networking protocol. The library is provided by the camel-jcifs Camel Extra
project which hosts all *GPL related components for Camel.

Maven users will need to add the following dependency to their for this component:pom.xml

xml <dependency> <groupId>org.apache-extras.camel-extra</groupId> <artifactId>camel-jcifs</artifactId> <version>x.x.x</version> <!-- use the same
version as your Camel core version --> </dependency> Consuming from remote server
Make sure you read the section titled further below for details related to consuming files.Default when consuming files

URI format
smb://[[[domain;]username[:password]@]server[:port]/[[share/[dir/]]]][?options]

Where represents the share to connect to and is optionaly any underlying directory. Can contain nested folders.share dir

You can append query options to the URI in the following format, ?option=value&option=value&...

This component uses the library for the actual CIFS/SMB work.JCIFS

URI Options

The options below are exclusive for the JCIFS component.

confluenceTableSmall

Name Default
Value

Description

password null Specifies the password to use to log in to the remote file system.Mandatory

localWork
 Directory
null When consuming, a local work directory can be used to store the remote file content directly in local files, to avoid loading the content into

memory. This is beneficial, if you consume a very big remote file and thus can conserve memory. See below for more details.

More options
See for more options as all the options from is inherited.File File

For example to set the to ''/tmp'' you can do:localWorkDirectory

java from("smb://foo@myserver.example.com/sharename?password=secret&localWorkDirectory=/tmp") .to("bean:foo");

You can have as many of these options as you like.

Examples

smb://foo@myserver.example.com/sharename?password=secret
smb://companydomain;foo@myserver.company.com/sharename?password=secret

More information
This component is an extension of the component. So there are more samples and details on the component page.File File

Message Headers

The following message headers can be used to affect the behavior of the component

confluenceTableSmall

Header Description

 CamelFileName Specifies the output file name (relative to the endpoint directory) to be used for the output message when sending to the endpoint. If this is not
present and no expression either, then a generated message ID is used as the filename instead.

CamelFileName
Produced

The actual absolute filepath (path + name) for the output file that was written. This header is set by Camel and its purpose is providing end-users the
name of the file that was written.

CamelFileBatc
hIndex

Current index out of total number of files being consumed in this batch.

CamelFileBatc
hSize

Total number of files being consumed in this batch.

 CamelFileHost The remote hostname.

http://code.google.com/p/camel-extra/
http://jcifs.samba.org/
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/File2
smb://foo@myserver.example.com/sharename?password=secret
smb://companydomain;foo@myserver.company.com/sharename?password=secret
https://cwiki.apache.org/confluence/display/CAMEL/File2
https://cwiki.apache.org/confluence/display/CAMEL/File2

CamelFileLoca
lWorkPath

Path to the local work file, if local work directory is used.

Using Local Work Directory

Camel JCIFS supports consuming from remote servers and downloading the files directly into a local work directory. This avoids reading the entire remote
file content into memory as it is streamed directly into the local file using .FileOutputStream

Camel JCIFS will store to a local file with the same name as the remote file. And finally, when the is complete the local file is deleted.Exchange

So if you want to download files from a remote server and store it as files then you need to route to a file endpoint such as:

java from("smb://foo@myserver.example.com/sharename?password=secret&localWorkDirectory=/tmp") .to("file://inbox"); Optimization by renaming work
file
The route above is ultra efficient as it avoids reading the entire file content into memory. It will download the remote file directly to a local file stream. The ja

 handle is then used as the body. The file producer leverages this fact and can work directly on the work file va.io.File Exchange java.io.File
handle and perform a to the target filename. As Camel knows it's a local work file, it can optimize and use a rename instead of a java.io.File.rename
file copy, as the work file is meant to be deleted anyway.

Samples

In the sample below we set up Camel to download all the reports from the SMB/CIFS server once every hour (60 min) and store it as files on the local file
system.

java protected RouteBuilder createRouteBuilder() throws Exception { return new RouteBuilder() { public void configure() throws Exception { // we use a
delay of 60 minutes (eg. once pr. hour) we poll the server long delay = 60 * 60 * 1000L; // from the given server we poll (= download) all the files // from the
public/reports folder and store this as files // in a local directory. Camel will use the filenames from the server from("smb://foo@myserver.example.com
/public/reports?password=secret&delay=" + delay) .to("file://target/test-reports"); } }; } from("smb://foo@myserver.example.com/sharename?
password=secret&delay=60000") .to("file://target/test-reports")

And the route using Spring DSL:

xml <route> <from uri="smb://foo@myserver.example.com/sharename?password=secret&delay=60000"/> <to uri="file://target/test-reports"/> </route>

Filter using org.apache.camel.component.file.GenericFileFilter

Camel supports pluggable filtering strategies. This strategy it to use the build in in Java. org.apache.camel.component.file.GenericFileFilter
You can then configure the endpoint with such a filter to skip certain filters before being processed.

In the sample we have built our own filter that only accepts files starting with report in the filename.

{snippet:id=e1|lang=java|url=camel/trunk/components/camel-ftp/src/test/java/org/apache/camel/component/file/remote/FromFtpRemoteFileFilterTest.java}

And then we can configure our route using the attribute to reference our filter (using notation) that we have defined in the spring XML file:filter #

xml <!-- define our sorter as a plain spring bean --> <bean id="myFilter" class="com.mycompany.MyFileFilter"/> <route> <from uri="smb://foo@myserver.
example.com/sharename?password=secret&filter=#myFilter"/> <to uri="bean:processInbox"/> </route>

Filtering using ANT path matcher

The ANT path matcher is a filter that is shipped out-of-the-box in the jar. So you need to depend on if you are using Maven. camel-spring camel-spring
The reason is that we leverage Spring's to do the actual matching.AntPathMatcher

The file paths are matched with the following rules:

? matches one character
* matches zero or more characters
** matches zero or more directories in a path

The sample below demonstrates how to use it:

xml <camelContext xmlns="http://camel.apache.org/schema/spring"> <template id="camelTemplate"/> <!-- use myFilter as filter to allow setting ANT paths
for which files to scan for --> <endpoint id="mySMBEndpoint" uri="smb://foo@myserver.example.com/sharename?password=secret&
recursive=true&filter=#myAntFilter"/> <route> <from ref="mySMBEndpoint"/> <to uri="mock:result"/> </route> </camelContext> <!-- we use the
AntPathMatcherRemoteFileFilter to use ant paths for includes and exclude --> <bean id="myAntFilter" class="org.apache.camel.component.file.
AntPathMatcherGenericFileFilter"> <!-- include any files in the sub folder that has day in the name --> <property name="includes" value="**/subfolder/**
/*day*"/> <!-- exclude all files with bad in name or .xml files. Use comma to separate multiple excludes --> <property name="excludes" value="**/*bad*,**/*.
xml"/> </bean> Endpoint See Also

File2

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/util/AntPathMatcher.html
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint+See+Also
https://cwiki.apache.org/confluence/display/CAMEL/File2

	JCIFS

