
Salesforce

Salesforce component

Available as of Camel 2.12

This component supports producer and consumer endpoints to communicate with Salesforce using Java DTOs.
There is a companion maven plugin Camel Salesforce Plugin that generates these DTOs (see further below).

Maven users will need to add the following dependency to their for this component:pom.xml

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-salesforce</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

URI format

The URI scheme for a salesforce component is as follows

salesforce:topic?options

You can append query options to the URI in the following format, ?option=value&option=value&...

Supported Salesforce APIs

The component supports the following Salesforce APIs

Producer endpoints can use the following APIs. Most of the APIs process one record at a time, the Query API can retrieve multiple Records.

Rest API

getVersions - Gets supported Salesforce REST API versions
getResources - Gets available Salesforce REST Resource endpoints
getGlobalObjects - Gets metadata for all available SObject types
getBasicInfo - Gets basic metadata for a specific SObject type
getDescription - Gets comprehensive metadata for a specific SObject type
getSObject - Gets an SObject using its Salesforce Id
createSObject - Creates an SObject
updateSObject - Updates an SObject using Id
deleteSObject - Deletes an SObject using Id
getSObjectWithId - Gets an SObject using an external (user defined) id field
upsertSObject - Updates or inserts an SObject using an external id
deleteSObjectWithId - Deletes an SObject using an external id
query - Runs a Salesforce SOQL query
queryMore - Retrieves more results (in case of large number of results) using result link returned from the 'query' API
search - Runs a Salesforce SOSL query
limits - fetching organization API usage limits
recent - fetching recently viewed items
approval - submit a record or records (batch) for approval process
approvals - fetch a list of all approval processes
composite-tree - create up to 200 records with parent-child relationships (up to 5 levels) in one go
composite-batch - submit a composition of requests in batch

For example, the following producer endpoint uses the upsertSObject API, with the sObjectIdName parameter specifying 'Name' as the external id field.
The request message body should be an SObject DTO generated using the maven plugin.
The response message will either be if an existing record was updated, or with an id of the new record, or a list of errors null CreateSObjectResult
while creating the new object.

 ...to("salesforce:upsertSObject?sObjectIdName=Name")...

Rest Bulk API

Producer endpoints can use the following APIs. All Job data formats, i.e. xml, csv, zip/xml, and zip/csv are supported.
The request and response have to be marshalled/unmarshalled by the route. Usually the request will be some stream source like a CSV file,
and the response may also be saved to a file to be correlated with the request.

https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_recent_items.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_process_approvals.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_process_approvals.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_composite_sobject_tree.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_composite_batch.htm

createJob - Creates a Salesforce Bulk Job
getJob - Gets a Job using its Salesforce Id
closeJob - Closes a Job
abortJob - Aborts a Job
createBatch - Submits a Batch within a Bulk Job
getBatch - Gets a Batch using Id
getAllBatches - Gets all Batches for a Bulk Job Id
getRequest - Gets Request data (XML/CSV) for a Batch
getResults - Gets the results of the Batch when its complete
createBatchQuery - Creates a Batch from an SOQL query
getQueryResultIds - Gets a list of Result Ids for a Batch Query
getQueryResult - Gets results for a Result Id

For example, the following producer endpoint uses the createBatch API to create a Job Batch.
The in message must contain a body that can be converted into an (usually UTF-8 CSV or XML content from a file, etc.) and header fields InputStream
'jobId' for the Job and 'contentType' for the Job content type, which can be XML, CSV, ZIP_XML or ZIP_CSV. The put message body will contain BatchIn

 on success, or throw a on error.fo SalesforceException

 ...to("salesforce:createBatchJob")..

Rest Streaming API

Consumer endpoints can use the following sytax for streaming endpoints to receive Salesforce notifications on create/update.

To create and subscribe to a topic

 from("salesforce:CamelTestTopic?
notifyForFields=ALL¬ifyForOperations=ALL&sObjectName=Merchandise__c&updateTopic=true&sObjectQuery=SELECT Id,
Name FROM Merchandise__c")...

To subscribe to an existing topic

 from("salesforce:CamelTestTopic&sObjectName=Merchandise__c")...

Examples

Uploading a document to a ContentWorkspace

Create the ContentVersion in Java, using a Processor instance:

public class ContentProcessor implements Processor {
 public void process(Exchange exchange) throws Exception {
 Message message = exchange.getIn();

 ContentVersion cv = new ContentVersion();
 ContentWorkspace cw = getWorkspace(exchange);
 cv.setFirstPublishLocationId(cw.getId());
 cv.setTitle("test document");
 cv.setPathOnClient("test_doc.html");
 byte[] document = message.getBody(byte[].class);
 ObjectMapper mapper = new ObjectMapper();
 String enc = mapper.convertValue(document, String.class);
 cv.setVersionDataUrl(enc);
 message.setBody(cv);
 }

 protected ContentWorkspace getWorkSpace(Exchange exchange) {
 // Look up the content workspace somehow, maybe use enrich() to add it to a
 // header that can be extracted here

 }
}

Give the output from the processor to the Salesforce component:

1.
2.
3.

 from("file:///home/camel/library")
 .to(new ContentProcessor()) // convert bytes from the file into a ContentVersion SObject
 // for the salesforce component
 .to("salesforce:createSObject");

Using Salesforce Limits API

With operation you can fetch of API limits from Salesforce and then act upon that data received. The result of salesforce:limits salesforce:limits
operation is mapped to class and can be used in a custom processors or expressions.org.apache.camel.component.salesforce.api.dto.Limits

For instance, consider that you need to limit the API usage of Salesforce so that 10% of daily API requests is left for other routes. The body of output
message contains an instance of object that can be used in conjunction with org.apache.camel.component.salesforce.api.dto.Limits Content Based Router
and to choose when to perform queries. Notice how multiplying with the integer value held in Spring Expression Language (SpEL) 1.0 body.

 makes the expression evaluate as with floating point arithmetic, without it - it would end up making integral division which dailyApiRequests.remaining
would result with either (some API limits consumed) or (no API limits consumed).0 1

from("direct:querySalesforce")
 .to("salesforce:limits")
 .choice()
 .when(spel("#{1.0 * body.dailyApiRequests.remaining / body.dailyApiRequests.max < 0.1}"))
 .to("salesforce:query?...")
 .otherwise()
 .setBody(constant("Used up Salesforce API limits, leaving 10% for critical routes"))
 .endChoice()

Working with approvals

All the properties are named exactly the same as in the Salesforce REST API prefixed with . You can set approval properties by setting approval approval
 of the Endpoint these will be used as template -- meaning that any property not present in either body or header will be taken from the PropertyName

Endpoint configuration. Or you can set the approval template on the Endpoint by assigning property to a reference onto a bean in the Registryapproval

You can also provide header values using the same in the incoming message headers.approvalPropertyName

And finally body can contain one or an of objects to process as a batch.AprovalRequest java.util.Iterable ApprovalRequest

The important thing to remember is the priority of the values specified in these three mechanisms:

value in body takes precedence before any other
value in message header takes precedence before template value
value in template is set if no other value in header or body was given

For example to send one record for approval using values in headers use:

Given a route:

from("direct:example1")
 .setHeader("approval.ContextId", simple("${body['contextId']}"))
 .setHeader("approval.NextApproverIds", simple("${body['nextApproverIds']}"))
 .to("salesforce:approval?"
 + "approval.actionType=Submit"
 + "&approval.comments=this is a test"
 + "&approval.processDefinitionNameOrId=Test_Account_Process"
 + "&approval.skipEntryCriteria=true");

You could send a record for approval using:

final Map<String, String> body = new HashMap<>();
body.put("contextId", accountIds.iterator().next());
body.put("nextApproverIds", userId);

final ApprovalResult result = template.requestBody("direct:example1", body, ApprovalResult.class);

Using Salesforce Recent Items API

https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/SpEL

To fetch the recent items use operation. This operation returns an of salesforce:recent java.util.List org.apache.camel.component.salesforce.api.dto.
 objects () that in turn contain the , and (with and properties). You can limit the number of RecentItem List<RecentItem> Id Name Attributes type url

returned items by specifying parameter set to maximum number of records to return.limit

For example:

from("direct:fetchRecentItems")
 to("salesforce:recent")
 .split().body()
 .log("${body.name} at ${body.attributes.url}");

Using Salesforce Composite API to submit SObject tree

To create up to 200 records including parent-child relationships use operation. This requires an instance of salesforce:composite-tree org.
 in the input message and returns the same tree of objects in the apache.camel.component.salesforce.api.dto.composite.SObjectTree

output message. The instances within the tree get updated with org.apache.camel.component.salesforce.api.dto.AbstractSObjectBase
the identifier values (property) or their corresponding is Id org.apache.camel.component.salesforce.api.dto.composite.SObjectNode
populated with on failure.errors

Note that for some records operation can succeed and for some it can fail—so you need to manually check for errors.
Easiest way to use this functionality is to use the DTOs generated by the , but you also have the option of camel-salesforce-maven-plugin
customizing the references that identify the each object in the tree, for instance primary keys from your database.
Lets look at an example:

Account account = ...
Contact president = ...
Contact marketing = ...

Account anotherAccount = ...
Contact sales = ...
Asset someAsset = ...

// build the tree
SObjectTree request = new SObjectTree();
request.addObject(account).addChildren(president, marketing);
request.addObject(anotherAccount).addChild(sales).addChild(someAsset);

final SObjectTree response = template.requestBody("salesforce:composite-tree", tree, SObjectTree.class);
final Map<Boolean, List<SObjectNode>> result = response.allNodes()
 .collect(Collectors.groupingBy(SObjectNode::hasErrors));

final List<SObjectNode> withErrors = result.get(true);
final List<SObjectNode> succeeded = result.get(false);

final String firstId = succeeded.get(0).getId();

Using Salesforce Composite API to submit multiple requests in a batch

The Composite API batch operation () allows you to accumulate multiple requests in a batch and then submit them in one go, saving composite-batch
the round trip cost of multiple individual requests. Each response is then received in a list of responses with the order perserved, so that the n-th requests
response is in the n-th place of the response.

The results can vary from API to API so the result of the request is given as a . In most cases the result will be java.lang.Object
a with string keys and values or other as value. Requests made in JSON format hold some type java.util.Map java.util.Map
information (i.e. it is known what values are strings and what values are numbers), so in general those will be more type friendly.
Note that the responses will vary between XML and JSON, this is due to the responses from Salesforce API being different. So be
careful if you switch between formats without changing the response handling code.

Lets look at an example:

final String acountId = ...
final SObjectBatch batch = new SObjectBatch("38.0");

final Account updates = new Account();
updates.setName("NewName");
batch.addUpdate("Account", accountId, updates);

final Account newAccount = new Account();
newAccount.setName("Account created from Composite batch API");
batch.addCreate(newAccount);

batch.addGet("Account", accountId, "Name", "BillingPostalCode");

batch.addDelete("Account", accountId);

final SObjectBatchResponse response = template.requestBody("salesforce:composite-batch?format=JSON", batch,
SObjectBatchResponse.class);

boolean hasErrors = response.hasErrors(); // if any of the requests has resulted in either 4xx or 5xx HTTP
status
final List<SObjectBatchResult> results = response.getResults(); // results of three operations sent in batch

final SObjectBatchResult updateResult = results.get(0); // update result
final int updateStatus = updateResult.getStatusCode(); // probably 204
final Object updateResultData = updateResult.getResult(); // probably null

final SObjectBatchResult createResult = results.get(1); // create result
@SuppressWarnings("unchecked")
final Map<String, Object> createData = (Map<String, Object>) createResult.getResult();
final String newAccountId = createData.get("id"); // id of the new account, this is for JSON, for XML it would
be createData.get("Result").get("id")

final SObjectBatchResult retrieveResult = results.get(2); // retrieve result
@SuppressWarnings("unchecked")
final Map<String, Object> retrieveData = (Map<String, Object>) retrieveResult.getResult();
final String accountName = retrieveData.get("Name"); // Name of the retrieved account, this is for JSON, for
XML it would be createData.get("Account").get("Name")
final String accountBillingPostalCode = retrieveData.get("BillingPostalCode"); // Name of the retrieved
account, this is for JSON, for XML it would be createData.get("Account").get("BillingPostalCode")

final SObjectBatchResult deleteResult = results.get(3); // delete result
final int updateStatus = deleteResult.getStatusCode(); // probably 204
final Object updateResultData = deleteResult.getResult(); // probably null

Camel Salesforce Maven Plugin

This Maven plugin generates DTOs for the Camel .Salesforce

Usage

The plugin configuration has the following properties.

Option Description

clientId Salesforce client Id for Remote API access

clientSecret Salesforce client secret for Remote API access

userName Salesforce account user name

password Salesforce account password (including secret token)

version Salesforce Rest API version, defaults to 25.0

outputDirectory Directory where to place generated DTOs, defaults to ${project.build.directory}/generated-sources/camel-salesforce

includes List of SObject types to include

excludes List of SObject types to exclude

includePattern Java RegEx for SObject types to include

excludePattern Java RegEx for SObject types to exclude

packageName Java package name for generated DTOs, defaults to org.apache.camel.salesforce.dto.

For obvious security reasons it is recommended that the clientId, clientSecret, userName and password fields be not set in the pom.xml.
The plugin should be configured for the rest of the properties, and can be executed using the following command:

 mvn camel-salesforce:generate -DclientId=<clientid> -DclientSecret=<clientsecret> -DuserName=<username>
-Dpassword=<password>

The generated DTOs use Jackson and XStream annotations. All Salesforce field types are supported. Date and time fields are mapped to Joda DateTime,
and picklist fields are mapped to generated Java Enumerations.

See Also

Configuring Camel
Component
Endpoint
Getting Started

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

	Salesforce

