
JPA

JPA Component

The component enables you to store and retrieve Java objects from persistent storage using EJB 3's Java Persistence Architecture (JPA), which is a jpa
standard interface layer that wraps Object/Relational Mapping (ORM) products such as OpenJPA, Hibernate, TopLink, and so on.

Maven users will need to add the following dependency to their for this component:pom.xml

xml<dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-jpa</artifactId> <version>x.x.x</version> <!-- use the same version as your
Camel core version --> </dependency>

Sending to the endpoint

You can store a Java entity bean in a database by sending it to a JPA producer endpoint. The body of the message is assumed to be an entity bean In
(that is, a POJO with an annotation on it) or a collection or array of entity beans.@Entity

If the body is a List of entities, make sure to use as a configuration passed to the producer endpoint.entityType=java.util.ArrayList

If the body does not contain one of the previous listed types, put a in front of the endpoint to perform the necessary conversion first.Message Translator

From onwards you can use , and option for the producer as well to retrieve a set of entities or execute bulk Camel 2.19 query namedQuery nativeQuery
update/delete.

Consuming from the endpoint

Consuming messages from a JPA consumer endpoint removes (or updates) entity beans in the database. This allows you to use a database table as a
logical queue: consumers take messages from the queue and then delete/update them to logically remove them from the queue.

If you do not wish to delete the entity bean when it has been processed (and when routing is done), you can specify on the URI. consumeDelete=false
This will result in the entity being processed each poll.

If you would rather perform some update on the entity to mark it as processed (such as to exclude it from a future query) then you can annotate a method
with which will be invoked on your entity bean when the entity bean when it has been processed (and when routing is done).@Consumed

From onwards you can use which will be invoked on your entity bean before it has been processed (before routing).Camel 2.13 @PreConsumed

If you are consuming a lot (100K+) of rows and experience OutOfMemory problems you should set the maximumResults to sensible value.

Note: Since , JPA now includes a implementation that better supports Content Enricher using to do Camel 2.18 JpaPollingConsumer pollEnrich()
an on-demand poll that returns either none, one or a list of entities as the result.

URI format
jpa:entityClassName[?options]

For sending to the endpoint, the is optional. If specified, it helps the to ensure the body is of the correct type.entityClassName Type Converter

For consuming, the is mandatory.entityClassName

You can append query options to the URI in the following format, ?option=value&option=value&...

Options

Name Default
Value

Description

entity
Type

entityClas
sName

Overrides the from the URI.entityClassName

persis
tenceU
nit

camel The JPA persistence unit used by default.

consum
eDelete

true JPA consumer only: If , the entity is deleted after it is consumed; if , the entity is not deleted.true false

consum
eLockE
ntity

true JPA consumer only: Specifies whether or not to set an exclusive lock on each entity bean while processing the results from
polling.

flushO
nSend

true JPA producer only: Flushes the after the entity bean has been persisted.EntityManager

http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
https://cwiki.apache.org/confluence/display/CAMEL/Message+Translator
http://camel.apache.org/maven/current/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html
http://camel.apache.org/maven/current/camel-jpa/apidocs/org/apache/camel/component/jpa/PreConsumed.html
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html

maximu
mResul
ts

-1 JPA consumer only: Set the maximum number of results to retrieve on the . Query Camel 2.19: it's also used for the producer
when it executes a query.

transa
ctionM
anager

null This option is based which requires the notation so that the given being specified can be Registry # transactionManager
looked up properly, e.g. . It specifies the transaction manager to use. If transactionManager=#myTransactionManager
none provided, Camel will use a by default. Can be used to set a JTA transaction manager (for JpaTransactionManager
integration with an EJB container).

consum
er.
delay

500 JPA consumer only: Delay in milliseconds between each poll.

consum
er.
initia
lDelay

1000 JPA consumer only: Milliseconds before polling starts.

consum
er.
useFix
edDelay

false JPA consumer only: Set to to use fixed delay between polls, otherwise fixed rate is used. See true ScheduledExecutorService
in JDK for details.

maxMes
sagesP
erPoll

0 JPA consumer only: An integer value to define the maximum number of messages to gather per poll. By default, no maximum
is set. Can be used to avoid polling many thousands of messages when starting up the server. Set a value of 0 or negative to
disable.

consum
er.
query

 JPA consumer only: To use a custom query when consuming data.

consum
er.
namedQ
uery

 JPA consumer only: To use a named query when consuming data.

consum
er.
native
Query

 JPA consumer only: To use a custom native query when consuming data. You may want to use the option consumer.
 also when using native queries.resultClass

consum
er.
parame
ters

 Camel 2.12: JPA consumer only: This option is based which requires the notation. This key/value mapping is used Registry #
for building the query parameters. It's is expected to be of the generic type where the java.util.Map<String, Object>
keys are the named parameters of a given JPA query and the values are their corresponding effective values you want to select
for.

consum
er.
result
Class

 Camel 2.7: JPA consumer only: Defines the type of the returned payload (we will call entityManager.
 instead of createNativeQuery(nativeQuery, resultClass) entityManager.createNativeQuery(nativeQuery)

). Without this option, we will return an object array. Only has an affect when using in conjunction with native query when
consuming data.

consum
er.
transa
cted

false Camel 2.7.5/2.8.3/2.9: JPA consumer only: Whether to run the consumer in transacted mode, by which all messages will
either commit or rollback, when the entire batch has been processed. The default behavior (false) is to commit all the previously
successfully processed messages, and only rollback the last failed message.

consum
er.
lockMo
deType

WRITE Camel 2.11.2/2.12: To configure the lock mode on the consumer. The possible values is defined in the enum javax.
. The default value is changed to since .persistence.LockModeType PESSIMISTIC_WRITE Camel 2.13

consum
er.
SkipLo
ckedEn
tity

false Camel 2.13: To configure whether to use NOWAIT on lock and silently skip the entity.

usePer
sist

false Camel 2.5: JPA producer only: Indicates to use instead of entityManager.persist(entity) entityManager.merge
. Note: doesn't work for detached entities (where the EntityManager has to (entity) entityManager.persist(entity)

execute an UPDATE instead of an INSERT query)!

joinTr
ansact
ion

true Camel 2.12.3: camel-jpa will join transaction by default from Camel 2.12 onwards. You can use this option to turn this off, for
example if you use LOCAL_RESOURCE and join transaction doesn't work with your JPA provider. This option can also be set
globally on the , instead of having to set it on all endpoints.JpaComponent

usePas
sedInEn
tityMan
ager

false Camel 2.12.4/2.13.1 JPA producer only: If set to true, then Camel will use the EntityManager from the header

JpaConstants.ENTITYMANAGER instead of the configured entity manager on the component/endpoint. This allows end users
to control which entity manager will be in use.

http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
https://cwiki.apache.org/confluence/display/CAMEL/Registry
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
https://cwiki.apache.org/confluence/display/CAMEL/Registry

shared
EntityM
anager

false Camel 2.16: whether to use spring's SharedEntityManager for the consumer/producer. A good idea may be to set
joinTransaction=false if this option is true, as sharing the entity manager and mixing transactions is not a good idea.

query To use a custom query. it can be used for producer as well.Camel 2.19:

named
Query

 To use a named query. it can be used for producer as well.Camel 2.19:

nativeQ
uery

 To use a custom native query. You may want to use the option resultClass also when using native queries. Camel 2.19: it
can be used for producer as well.

paramet
ers

 This option is Registry based which requires the # notation. This key/value mapping is used for building the query parameters. It
is expected to be of the generic type java.util.Map<String, Object> where the keys are the named parameters of a
given JPA query and the values are their corresponding effective values you want to select for. Camel 2.19: it can be used for
producer as well. When it's used for producer, expression can be used as a parameter value. It allows you to retrieve Simple
parameter values from the message body header and etc.

resultCl
ass

 Defines the type of the returned payload (we will call entityManager.createNativeQuery(nativeQuery,
resultClass) instead of entityManager.createNativeQuery(nativeQuery)). Without this option, we will return an
object array. Only has an affect when using in conjunction with native query. Camel 2.19: it can be used for producer as well.

useExe
cuteUp
date

 Camel 2.19: JPA producer only: To configure whether to use executeUpdate() when producer executes a query. When you
use INSERT, UPDATE or DELETE statement as a named query, you need to specify this option to 'true'.

Message Headers

Camel adds the following message headers to the exchange:

confluenceTableSmall

Header Type Description

CamelJp
aTempla
te

JpaTe
mplate

Not supported anymore since Camel 2.12: The object that is used to access the entity bean. You need this JpaTemplate
object in some situations, for instance in a type converter or when you are doing some custom processing. See for CAMEL-5932
the reason why the support for this header has been dropped.

CamelEn
tityMan
ager

Entit
yMana
ger

Camel 2.12: JPA consumer / Camel 2.12.2: JPA producer: The JPA object being used by or EntityManager JpaConsumer
.JpaProducer

Configuring EntityManagerFactory

Its strongly advised to configure the JPA component to use a specific instance. If failed to do so each will auto EntityManagerFactory JpaEndpoint
create their own instance of which most often is not what you want.EntityManagerFactory

For example, you can instantiate a JPA component that references the entity manager factory, as follows:myEMFactory

xml<bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent"> <property name="entityManagerFactory" ref="myEMFactory"/> </bean>

In the will auto lookup the from the which means you do not need to configure this on the Camel 2.3 JpaComponent EntityManagerFactory Registry J
 as shown above. You only need to do so if there is ambiguity, in which case Camel will log a WARN.paComponent

Configuring TransactionManager

Since the will auto lookup the from the If Camel won't find any Camel 2.3 JpaComponent TransactionManager Registry. TransactionManager
instance registered, it will also look up for the and try to extract from it.TransactionTemplate TransactionManager

If none is available in the registry, will auto create their own instance of which most TransactionTemplate JpaEndpoint TransactionManager
often is not what you want.

If more than single instance of the is found, Camel will log a WARN. In such cases you might want to instantiate and explicitly TransactionManager
configure a JPA component that references the transaction manager, as follows:myTransactionManager

xml<bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent"> <property name="entityManagerFactory" ref="myEMFactory"/> <property
name="transactionManager" ref="myTransactionManager"/> </bean>

Using a consumer with a named query

For consuming only selected entities, you can use the URI query option. First, you have to define the named query in the JPA consumer.namedQuery
Entity class:

@Entity @NamedQuery(name = "step1", query = "select x from MultiSteps x where x.step = 1") public class MultiSteps { ... }

https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://issues.apache.org/jira/browse/CAMEL-5932
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry

After that you can define a consumer uri like this one:

from("jpa://org.apache.camel.examples.MultiSteps?consumer.namedQuery=step1") .to("bean:myBusinessLogic");

Using a consumer with a query

For consuming only selected entities, you can use the URI query option. You only have to define the query option:consumer.query

from("jpa://org.apache.camel.examples.MultiSteps?consumer.query=select o from org.apache.camel.examples.MultiSteps o where o.step = 1") .to("bean:
myBusinessLogic");

Using a consumer with a native query

For consuming only selected entities, you can use the URI query option. You only have to define the native query option:consumer.nativeQuery

from("jpa://org.apache.camel.examples.MultiSteps?consumer.nativeQuery=select * from MultiSteps where step = 1") .to("bean:myBusinessLogic");

If you use the native query option, you will receive an object array in the message body.

Using a producer with a named query

For retrieving selected entities or execute bulk update/delete, you can use the URI query option. First, you have to define the named query in namedQuery
the JPA Entity class:

@Entity @NamedQuery(name = "step1", query = "select x from MultiSteps x where x.step = 1") public class MultiSteps { ... }

After that you can define a producer uri like this one:

from("direct:namedQuery") .to("jpa://org.apache.camel.examples.MultiSteps?namedQuery=step1");

Using a producer with a query

For retrieving selected entities or execute bulk update/delete, you can use the URI query option. You only have to define the query option:query

from("direct:query") .to("jpa://org.apache.camel.examples.MultiSteps?query=select o from org.apache.camel.examples.MultiSteps o where o.step = 1");

Using a producer with a native query

For retrieving selected entities or execute bulk update/delete, you can use the URI query option. You only have to define the native query nativeQuery
option:

from("direct:nativeQuery") .to("jpa://org.apache.camel.examples.MultiSteps?resultClass=org.apache.camel.examples.MultiSteps&nativeQuery=select *
from MultiSteps where step = 1");

If you use the native query option without specifying , you will receive an object array in the message body.resultClass

Example

See for an example using to store traced messages into a database.Tracer Example JPA

Using the JPA based idempotent repository

In this section we will use the JPA based idempotent repository.

First we need to setup a in the persistence.xml file:persistence-unit {snippet:id=e1|lang=xml|url=camel/trunk/components/camel-jpa/src/test/resources
Second we have to setup a which is used by the /META-INF/persistence.xml} org.springframework.orm.jpa.JpaTemplate org.apache.camel.

:processor.idempotent.jpa.JpaMessageIdRepository {snippet:id=e1|lang=xml|url=camel/trunk/components/camel-jpa/src/test/resources/org
Afterwards we can configure our /apache/camel/processor/jpa/spring.xml} org.apache.camel.processor.idempotent.jpa.

:JpaMessageIdRepository {snippet:id=jpaStore|lang=xml|url=camel/trunk/components/camel-jpa/src/test/resources/org/apache/camel/processor/jpa
And finally we can create our JPA idempotent repository in the spring XML file as well:/fileConsumerJpaIdempotentTest-config.xml}

xml<camelContext xmlns="http://camel.apache.org/schema/spring"> <route id="JpaMessageIdRepositoryTest"> <from uri="direct:start" />
<idempotentConsumer messageIdRepositoryRef="jpaStore"> <header>messageId</header> <to uri="mock:result" /> </idempotentConsumer> </route> <
/camelContext> When running this Camel component tests inside your IDE
In case you run the directly inside your IDE (and not necessarily through Maven itself) then you could spot exceptions like:tests of this component

javaorg.springframework.transaction.CannotCreateTransactionException: Could not open JPA EntityManager for transaction; nested exception is
<openjpa-2.2.1-r422266:1396819 nonfatal user error> org.apache.openjpa.persistence.ArgumentException: This configuration disallows runtime
optimization, but the following listed types were not enhanced at build time or at class load time with a javaagent: "org.apache.camel.examples.
SendEmail". at org.springframework.orm.jpa.JpaTransactionManager.doBegin(JpaTransactionManager.java:427) at org.springframework.transaction.

https://cwiki.apache.org/confluence/display/CAMEL/Tracer+Example
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/src/test

support.AbstractPlatformTransactionManager.getTransaction(AbstractPlatformTransactionManager.java:371) at org.springframework.transaction.support.
TransactionTemplate.execute(TransactionTemplate.java:127) at org.apache.camel.processor.jpa.JpaRouteTest.cleanupRepository(JpaRouteTest.java:96)
at org.apache.camel.processor.jpa.JpaRouteTest.createCamelContext(JpaRouteTest.java:67) at org.apache.camel.test.junit4.CamelTestSupport.doSetUp
(CamelTestSupport.java:238) at org.apache.camel.test.junit4.CamelTestSupport.setUp(CamelTestSupport.java:208)

The problem here is that the source has been compiled/recompiled through your IDE and not through Maven itself which would enhance the byte-code at
. To overcome this you would need to enable . As an example assuming the current OpenJPA build time dynamic byte-code enhancement of OpenJPA

version being used in Camel itself is 2.2.1, then as running the tests inside your favorite IDE you would need to pass the following argument to the JVM:

-javaagent:<path_to_your_local_m2_cache>/org/apache/openjpa/openjpa/2.2.1/openjpa-2.2.1.jar

Then it will all become green again

Endpoint See Also

Tracer Example

https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/pom.xml
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/pom.xml
http://openjpa.apache.org/entity-enhancement.html#dynamic-enhancement
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint+See+Also
https://cwiki.apache.org/confluence/display/CAMEL/Tracer+Example

	JPA

