
Netty HTTP

Netty HTTP Component

Available as of Camel 2.12

The component is an extension to component to facilitiate HTTP transport with .netty-http Netty Netty

This camel component supports both producer and consumer endpoints.

Maven users will need to add the following dependency to their for this component:pom.xml

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-netty-http</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

URI format

The URI scheme for a netty component is as follows

netty-http:http://localhost:8080[?options]

You can append query options to the URI in the following format, ?option=value&option=value&...

HTTP Options

Name Default
Value

Description

This component is deprecated. You should use .Netty4 HTTP

Stream

Netty is stream based, which means the input it receives is submitted to Camel as a stream. That means you will only be able to read the
content of the stream .once
If you find a situation where the message body appears to be empty or you need to access the data multiple times (eg: doing multicasting, or
redelivery error handling)
you should use or convert the message body to a which is safe to be re-read multiple times.Stream caching String

Notice Netty4 HTTP reads the entire stream into memory using io.netty.handler.codec.http.HttpObjectAggregator to build the
entire full http message. But the resulting message is still a stream based message which is readable once.

Query parameters vs endpoint options

You may be wondering how Camel recognizes URI query parameters and endpoint options. For example you might create endpoint URI as
follows - . In this example is the HTTP parameter, netty-http:http//example.com?myParam=myValue&compression=true myParam
while is the Camel endpoint option. The strategy used by Camel in such situations is to resolve available endpoint options and compression
remove them from the URI. It means that for the discussed example, the HTTP request sent by Netty HTTP producer to the endpoint will look
as follows - , because endpoint option will be resolved and removed from the target http//example.com?myParam=myValue compression
URL.

Keep also in mind that you cannot specify endpoint options using dynamic headers (like). Endpoint options can be specified CamelHttpQuery
only at the endpoint URI definition level (like or DSL elements).to from

A lot more options

Important: This component inherits all the options from . So make sure to look at the documentation as well.Netty Netty
Notice that some options from is not applicable when using this component, such as options related to UDP transport.Netty Netty HTTP

https://cwiki.apache.org/confluence/display/CAMEL/Netty
https://cwiki.apache.org/confluence/display/CAMEL/Netty
https://cwiki.apache.org/confluence/display/CAMEL/Netty4+HTTP
https://cwiki.apache.org/confluence/display/CAMEL/Stream+caching
https://cwiki.apache.org/confluence/display/CAMEL/Netty
https://cwiki.apache.org/confluence/display/CAMEL/Netty
https://cwiki.apache.org/confluence/display/CAMEL/Netty

chunke
dMaxCo
ntentL
ength

1mb Value in bytes the max content length per chunked frame received on the Netty HTTP server.

compre
ssion

false Allow using gzip/deflate for compression on the Netty HTTP server if the client supports it from the HTTP headers.

header
Filter
Strate
gy

 To use a custom to filter headers.org.apache.camel.spi.HeaderFilterStrategy

httpMe
thodRe
strict

 To disable HTTP methods on the Netty HTTP consumer. You can specify multiple separated by comma.

mapHea
ders

true If this option is enabled, then during binding from Netty to Camel then the headers will be mapped as well (eg added Message
as header to the Camel as well). You can turn off this option to disable this. The headers can still be accessed from Message
the message with the method org.apache.camel.component.netty.http.NettyHttpMessage getHttpRequest()
that returns the Netty HTTP request instance.org.jboss.netty.handler.codec.http.HttpRequest

matchO
nUriPr
efix

false Whether or not Camel should try to find a target consumer by matching the URI prefix if no exact match is found. See further
below for more details.

nettyH
ttpBin
ding

 To use a custom for binding to/from Netty and Camel org.apache.camel.component.netty.http.NettyHttpBinding
Message API.

bridge
Endpoi
nt

false If the option is , the producer will ignore the header, and use the endpoint's URI for request. You true Exchange.HTTP_URI
may also set the to be to let the producer send all the fault response back. The consumer throwExceptionOnFailure false
working in the bridge mode will skip the gzip compression and WWW URL form encoding (by adding the Exchange.

 and headers to the consumed exchange).SKIP_GZIP_ENCODING Exchange.SKIP_WWW_FORM_URLENCODED

throwE
xcepti
onOnFa
ilure

true Option to disable throwing the in case of failed responses from the remote server. This HttpOperationFailedException
allows you to get all responses regardles of the HTTP status code.

traceE
nabled

false Specifies whether to enable HTTP TRACE for this Netty HTTP consumer. By default TRACE is turned off.

transf
erExce
ption

false If enabled and an failed processing on the consumer side, and if the caused Exception was send back serialized in Exchange
the response as a content type. On the producer side the exception will be application/x-java-serialized-object
deserialized and thrown as is, instead of the . The caused exception is required to be HttpOperationFailedException
serialized.

urlDec
odeHea
ders

 If this option is enabled, then during binding from Netty to Camel then the header values will be URL decoded (eg %20 Message
will be a space character. Notice this option is used by the default org.apache.camel.component.netty.http.

 and therefore if you implement a custom NettyHttpBinding org.apache.camel.component.netty.http.
 then you would need to decode the headers accordingly to this option. This option is default NettyHttpBinding Notice: true

for Camel 2.12.x, and default from Camel 2.13 onwards.false

nettyS
haredH
ttpSer
ver

null To use a shared server. See for more details.Netty HTTP Netty HTTP Server Example

disabl
eStrea
mCache

false Determines whether or not the raw input stream from Netty is cached or not (Camel will read HttpRequest#getContent()
the stream into a in light-weight memory based Stream caching) cache. By default Camel will cache the Netty input stream to
support reading it multiple times to ensure it Camel can retrieve all data from the stream. However you can set this option to true
when you for example need to access the raw stream, such as streaming it directly to a file or other persistent store. Mind that if
you enable this option, then you cannot read the Netty stream multiple times out of the box, and you would need manually to
reset the reader index on the Netty raw stream.

Notice Netty4 HTTP reads the entire stream into memory using io.netty.handler.codec.http.HttpObjectAggregator
to build the entire full http message. But the resulting message is still a stream based message which is readable once.

securi
tyConf
igurat
ion

null Consumer only. Refers to a for org.apache.camel.component.netty.http.NettyHttpSecurityConfiguration
configuring secure web resources.

send50
3whenS
uspend
ed

true Consumer only. Whether to send back HTTP status code 503 when the consumer has been suspended. If the option is false
then the Netty Acceptor is unbound when the consumer is suspended, so clients cannot connect anymore.

https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Netty+HTTP+Server+Example

maxHea
derSize

8192 Camel 2.15.3: The maximum length of all headers. If the sum of the length of each header exceeds this value, Consumer only.
a TooLongFrameException will be raised.

okStat
usCode
Range

200-299 Camel 2.16: The status codes which is considered a success response. The values are inclusive. The range must be defined as
from-to with the dash included.

useRela
tivePath

false Camel 2.16: Producer only: Whether to use a path (/myapp) in the request line or an absolute URI (http://0.0.0.0:8080/myapp),
which is default.

The has the following options:NettyHttpSecurityConfiguration

Name Default
Value

Description

authenti
cate

true Whether authentication is enabled. Can be used to quickly turn this off.

constrai
nt

Basic The constraint supported. Currently only is implemented and supported.Basic

realm null The name of the JAAS security realm. This option is mandatory.

security
Constrai
nt

null Allows to plugin a security constraint mapper where you can define ACL to web resources.

security
Authenti
cator

null Allows to plugin a authenticator that performs the authentication. If none has been configured then the org.apache.camel.
 is used by default.component.netty.http.JAASSecurityAuthenticator

loginDen
iedLoggi
ngLevel

DEBUG Logging level used when a login attempt failed, which allows to see more details why the login failed.

roleClas
sName

null To specify FQN class names of implementations that contains user roles. If none has been specified, then the Principal Ne
 component will by default assume a is role based if its FQN classname has the lower-case word tty HTTP Principal role

in its classname. You can specify multiple class names separated by comma.

Message Headers

The following headers can be used on the producer to control the HTTP request.

Name Type Description

CamelHttp
Method

String Allow to control what HTTP method to use such as GET, POST, TRACE etc. The type can also be a org.jboss.netty.
 instance.handler.codec.http.HttpMethod

CamelHttp
Query

String Allows to provide URI query parameters as a value that overrides the endpoint configuration. Separate multiple String
parameters using the & sign. For example: .foo=bar&beer=yes

CamelHttp
Path

String Camel 2.13.1/2.12.4: Allows to provide URI context-path and query parameters as a value that overrides the endpoint String
configuration. This allows to reuse the same producer for calling same remote http server, but using a dynamic context-path
and query parameters.

Content-
Type

String To set the content-type of the HTTP body. For example: .text/plain; charset="UTF-8"

CamelHttp
ResponseC
ode

int Allows to set the HTTP Status code to use. By default 200 is used for success, and 500 for failure.

The following headers is provided as meta-data when a route starts from an endpoint:Netty HTTP

The description in the table takes offset in a route having: from("netty-http:http:0.0.0.0:8080/myapp")...

Name Type Description

CamelHttpMet
hod

String The HTTP method used, such as GET, POST, TRACE etc.

http://0.0.0.0:8080/myapp%29,

CamelHttpUrl String The URL including protocol, host and port, etc:

http://0.0.0.0:8080/myapp

CamelHttpUri String The URI without protocol, host and port, etc:

/myapp

CamelHttpQue
ry

String Any query parameters, such as foo=bar&beer=yes

CamelHttpRaw
Query

String Camel 2.13.0: Any query parameters, such as . Stored in the raw form, as they arrived to the foo=bar&beer=yes
consumer (i.e. before URL decoding).

CamelHttpPath String Additional context-path. This value is empty if the client called the context-path . If the client calls /myapp /myapp
, then this header value is . In other words its the value after the context-path configured on the route /mystuff /mystuff

endpoint.

CamelHttpCha
racterEncodi
ng

String The charset from the content-type header.

CamelHttpAut
hentication

String If the user was authenticated using HTTP Basic then this header is added with the value .Basic

Content-Type String The content type if provided. For example: .text/plain; charset="UTF-8"

Access to Netty types

This component uses the as the message implementation on the . This org.apache.camel.component.netty.http.NettyHttpMessage Exchange
allows end users to get access to the original Netty request/response instances if needed, as shown below. Mind that the original response may not be
accessible at all times.

org.jboss.netty.handler.codec.http.HttpRequest request = exchange.getIn(NettyHttpMessage.class).
getHttpRequest();

Examples

In the route below we use as a HTTP server, which returns back a hardcoded "Bye World" message.Netty HTTP

 from("netty-http:http://0.0.0.0:8080/foo")
 .transform().constant("Bye World");

And we can call this HTTP server using Camel also, with the as shown below:ProducerTemplate

 String out = template.requestBody("netty-http:http://localhost:8080/foo", "Hello World", String.class);
 System.out.println(out);

And we get back "Bye World" as the output.

How do I let Netty match wildcards

By default will only match on exact uri's. But you can instruct Netty to match prefixes. For exampleNetty HTTP

from("netty-http:http://0.0.0.0:8123/foo").to("mock:foo");

In the route above will only match if the uri is an exact match, so it will match if you enterNetty HTTP
 but not match if you do .http://0.0.0.0:8123/foo http://0.0.0.0:8123/foo/bar

So if you want to enable wildcard matching you do as follows:

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/ProducerTemplate
http://0.0.0.0:8123/foo
http://0.0.0.0:8123/foo/bar

from("netty-http:http://0.0.0.0:8123/foo?matchOnUriPrefix=true").to("mock:foo");

So now Netty matches any endpoints with starts with .foo

To match endpoint you can do:any

from("netty-http:http://0.0.0.0:8123?matchOnUriPrefix=true").to("mock:foo");

Using multiple routes with same port

In the same you can have multiple routes from that shares the same port (eg a CamelContext Netty HTTP org.jboss.netty.bootstrap.
 instance). Doing this requires a number of bootstrap options to be identical in the routes, as the routes will share the same ServerBootstrap org.

 instance. The instance will be configured with the options from the first route created.jboss.netty.bootstrap.ServerBootstrap

The options the routes must be identical configured is all the options defined in the org.apache.camel.component.netty.
 configuration class. If you have configured another route with different options, Camel will throw an exception NettyServerBootstrapConfiguration

on startup, indicating the options is not identical. To mitigate this ensure all options is identical.

Here is an example with two routes that share the same port.

Two routes sharing the same port

from("netty-http:http://0.0.0.0:{{port}}/foo")
 .to("mock:foo")
 .transform().constant("Bye World");

from("netty-http:http://0.0.0.0:{{port}}/bar")
 .to("mock:bar")
 .transform().constant("Bye Camel");

And here is an example of a mis configured 2nd route that do not have identical org.apache.camel.component.netty.
 option as the 1st route. This will cause Camel to fail on startup.NettyServerBootstrapConfiguration

Two routes sharing the same port, but the 2nd route is misconfigured and will fail on starting

from("netty-http:http://0.0.0.0:{{port}}/foo")
 .to("mock:foo")
 .transform().constant("Bye World");

// we cannot have a 2nd route on same port with SSL enabled, when the 1st route is NOT
from("netty-http:http://0.0.0.0:{{port}}/bar?ssl=true")
 .to("mock:bar")
 .transform().constant("Bye Camel");

Reusing same server bootstrap configuration with multiple routes

By configuring the common server bootstrap option in an single instance of a org.apache.camel.component.netty.
 type, we can use the option on the consumers to refer and reuse NettyServerBootstrapConfiguration bootstrapConfiguration Netty HTTP

the same options across all consumers.

<bean id="nettyHttpBootstrapOptions" class="org.apache.camel.component.netty.NettyServerBootstrapConfiguration">
 <property name="backlog" value="200"/>
 <property name="connectTimeout" value="20000"/>
 <property name="workerCount" value="16"/>
</bean>

And in the routes you refer to this option as shown below

https://cwiki.apache.org/confluence/display/CAMEL/CamelContext

<route>
 <from uri="netty-http:http://0.0.0.0:{{port}}/foo?bootstrapConfiguration=#nettyHttpBootstrapOptions"/>
 ...
</route>

<route>
 <from uri="netty-http:http://0.0.0.0:{{port}}/bar?bootstrapConfiguration=#nettyHttpBootstrapOptions"/>
 ...
</route>

<route>
 <from uri="netty-http:http://0.0.0.0:{{port}}/beer?bootstrapConfiguration=#nettyHttpBootstrapOptions"/>
 ...
</route>

Reusing same server bootstrap configuration with multiple routes across multiple bundles in OSGi container

See the for more details and example how to do that.Netty HTTP Server Example

Using HTTP Basic Authentication

The consumer supports HTTP basic authentication by specifying the security realm name to use, as shown belowNetty HTTP

<route>
 <from uri="netty-http:http://0.0.0.0:{{port}}/foo?securityConfiguration.realm=karaf"/>
 ...
</route>

The realm name is mandatory to enable basic authentication. By default the JAAS based authenticator is used, which will use the realm name specified
(karaf in the example above) and use the JAAS realm and the JAAS {{LoginModule}}s of this realm for authentication.

End user of Apache Karaf / ServiceMix has a karaf realm out of the box, and hence why the example above would work out of the box in these containers.

Specifying ACL on web resources

The allows to define constrains on web resources. And the org.apache.camel.component.netty.http.SecurityConstraint org.apache.
 is provided out of the box, allowing to easily define inclusions and exclusions with camel.component.netty.http.SecurityConstraintMapping

roles.

For example as shown below in the XML DSL, we define the constraint bean:

 <bean id="constraint" class="org.apache.camel.component.netty.http.SecurityConstraintMapping">
 <!-- inclusions defines url -> roles restrictions -->
 <!-- a * should be used for any role accepted (or even no roles) -->
 <property name="inclusions">
 <map>
 <entry key="/*" value="*"/>
 <entry key="/admin/*" value="admin"/>
 <entry key="/guest/*" value="admin,guest"/>
 </map>
 </property>
 <!-- exclusions is used to define public urls, which requires no authentication -->
 <property name="exclusions">
 <set>
 <value>/public/*</value>
 </set>
 </property>
 </bean>

The constraint above is define so that

access to /* is restricted and any roles is accepted (also if user has no roles)
access to /admin/* requires the admin role
access to /guest/* requires the admin or guest role
access to /public/* is an exclusion which means no authentication is needed, and is therefore public for everyone without logging in

To use this constraint we just need to refer to the bean id as shown below:

https://cwiki.apache.org/confluence/display/CAMEL/Netty+HTTP+Server+Example

<route>
 <from uri="netty-http:http://0.0.0.0:{{port}}/foo?matchOnUriPrefix=true&securityConfiguration.
realm=karaf&securityConfiguration.securityConstraint=#constraint"/>
 ...
</route>

See Also

Configuring Camel
Component
Endpoint
Getting Started

Netty
Netty HTTP Server Example
Jetty

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started
https://cwiki.apache.org/confluence/display/CAMEL/Netty
https://cwiki.apache.org/confluence/display/CAMEL/Netty+HTTP+Server+Example
https://cwiki.apache.org/confluence/display/CAMEL/Jetty

	Netty HTTP

