
File Upload
The Struts 2 framework provides built-in support for processing file uploads that conform to , "Form-based File Upload in HTML". When correctly RFC 1867
configured the framework will pass uploaded file(s) into your Action class. Support for individual and multiple file uploads are provided. When a file is
uploaded it will typically be stored in a temporary directory. Uploaded files should be processed or moved by your Action class to ensure the data is not
lost. Be aware that servers may have a security policy in place that prohibits you from writing to directories other than the temporary directory and the
directories that belong to your web application.

2

Dependencies

The Struts 2 framework leverages add-on libraries to handle the parsing of uploaded files. These libraries are not included in the Struts distribution, you
must add them into your project. The libraries needed are:

Library URL Struts 2.0.x Struts 2.1.x Struts 2.5.x

Commons-FileUpload http://commons.apache.org/fileupload/ 1.1.1 1.2.1 1.3.2

Commons-IO http://commons.apache.org/io/ 1.0 1.3.2 2.4

If you are using Maven then you can add these libraries as dependencies in your project's pom.xml.

xmlStruts 2.0.x File Upload Dependencies<dependency> <groupId>commons-fileupload</groupId> <artifactId>commons-fileupload</artifactId>
<version>1.1.1</version> </dependency> <dependency> <groupId>commons-io</groupId> <artifactId>commons-io</artifactId> <version>1.0</version> <
/dependency> xmlStruts 2.1.x File Upload Dependencies<dependency> <groupId>commons-fileupload</groupId> <artifactId>commons-fileupload<
/artifactId> <version>1.2.1</version> </dependency> <dependency> <groupId>commons-io</groupId> <artifactId>commons-io</artifactId> <version>1.3.2
</version> </dependency>

Basic Usage

The class is included as part of the . As long as the required org.apache.struts2.interceptor.FileUploadInterceptor defaultStack
libraries are added to your project you will be able to take advantage of of the Struts 2 fileUpload capability. Configure an Action mapping for your Action
class as you typically would.

Example action mapping:

xml<action name="doUpload" class="com.example.UploadAction"> <result name="success">good_result.jsp</result> </action>

A form must be create with a form field of type file, . The form used to upload the file must have its encoding <INPUT type="file" name="upload">
type set to multipart/form-data, . The standard procedure for <FORM action="doUpload" enctype="multipart/form-data" method="post">
adding these elements is by using the Struts 2 tag libraries as shown in the following example:

Example JSP form tags:{snippet:id=example-form|lang=xml|javadoc=true|url=org.apache.struts2.interceptor.FileUploadInterceptor}The fileUpload
interceptor will use setter injection to insert the uploaded file and related data into your Action class. For a form field named you would provide the upload
three setter methods shown in the following example:

Example Action class:

javapackage com.example; import java.io.File; import com.opensymphony.xwork2.ActionSupport; public class UploadAction extends ActionSupport {
private File file; private String contentType; private String filename; public void setUpload(File file) { this.file = file; } public void setUploadContentType
(String contentType) { this.contentType = contentType; } public void setUploadFileName(String filename) { this.filename = filename; } public String execute()
{ //... return SUCCESS; } }

The purpose of each one of these methods is described in the table below. Notice that if you have multiple file form elements with different names you
would be required to have another corresponding set of these methods for each file uploaded.

Method Signature Description

setX(File file) The file that contains the content of the uploaded file. This is a temporary file and will not return the file.getName()
original name of the file

setXContentType(String
contentType)

The mime type of the uploaded file

setXFileName(String fileName) The actual file name of the uploaded file (not the HTML name)

Uploading Multiple Files

As mentioned in the previous section one technique for uploading multiple files would be to simply have multiple form input elements of type file all with
different names. This would require a number of setter methods that was equal to 3 times the number of files being uploaded. Another option is to use
Arrays or java.util.Lists. The following examples are taken from the Showcase example application that is part sample applications you can download at htt

. For the Action mapping details see in the sample application download.p://struts.apache.org/download.cgi struts-fileupload.xml

http://www.ietf.org/rfc/rfc1867.txt
http://commons.apache.org/fileupload/
http://commons.apache.org/io/
http://struts.apache.org/download.cgi
http://struts.apache.org/download.cgi

Uploading Multiple Files using Arrays

multipleUploadUsingArray.jsp Notice all file input types have the same name.

html<s:form action="doMultipleUploadUsingArray" method="POST" enctype="multipart/form-data"> <s:file label="File (1)" name="upload" /> <s:file label="
File (2)" name="upload" /> <s:file label="FIle (3)" name="upload" /> <s:submit cssClass="btn btn-primary"/> </s:form>

MultipleFileUploadUsingArrayAction.java

javapublic class MultipleFileUploadUsingArrayAction extends ActionSupport { private File[] uploads; private String[] uploadFileNames; private String[]
uploadContentTypes; public String upload() throws Exception { System.out.println("\n\n upload2"); System.out.println("files:"); for (File u : uploads) {
System.out.println("*** " + u + "\t" + u.length()); } System.out.println("filenames:"); for (String n : uploadFileNames) { System.out.println("*** " + n); } System.
out.println("content types:"); for (String c : uploadContentTypes) { System.out.println("*** " + c); } System.out.println("\n\n"); return SUCCESS; } public File[]
getUpload() { return this.uploads; } public void setUpload(File[] upload) { this.uploads = upload; } public String[] getUploadFileName() { return this.
uploadFileNames; } public void setUploadFileName(String[] uploadFileName) { this.uploadFileNames = uploadFileName; } public String[]
getUploadContentType() { return this.uploadContentTypes; } public void setUploadContentType(String[] uploadContentType) { this.uploadContentTypes =
uploadContentType; } }

Uploading Multiple Files using Lists

multipleUploadUsingList.jsp Notice all file input types have the same name.

xml<s:form action="doMultipleUploadUsingList" method="POST" enctype="multipart/form-data"> <s:file label="File (1)" name="upload" /> <s:file label="File
(2)" name="upload" /> <s:file label="FIle (3)" name="upload" /> <s:submit cssClass="btn btn-primary"/> </s:form>

MultipleFileUploadUsingListAction.java

javapublic class MultipleFileUploadUsingListAction extends ActionSupport { private List<File> uploads = new ArrayList<File>(); private List<String>
uploadFileNames = new ArrayList<String>(); private List<String> uploadContentTypes = new ArrayList<String>(); public List<File> getUpload() { return this.
uploads; } public void setUpload(List<File> uploads) { this.uploads = uploads; } public List<String> getUploadFileName() { return this.uploadFileNames; }
public void setUploadFileName(List<String> uploadFileNames) { this.uploadFileNames = uploadFileNames; } public List<String> getUploadContentType()
{ return this.uploadContentTypes; } public void setUploadContentType(List<String> contentTypes) { this.uploadContentTypes = contentTypes; } public
String upload() throws Exception { System.out.println("\n\n upload1"); System.out.println("files:"); for (File u : uploads) { System.out.println("*** " + u + "\t" +
u.length()); } System.out.println("filenames:"); for (String n : uploadFileNames) { System.out.println("*** " + n); } System.out.println("content types:"); for
(String c : uploadContentTypes) { System.out.println("*** " + c); } System.out.println("\n\n"); return SUCCESS; } }

Advanced Configuration

The Struts 2 file defines several settings that affect the behavior of file uploading. You may find in necessary to change these default.properties
values. The names and default values are:

nonestruts.multipart.parser=jakarta struts.multipart.saveDir= struts.multipart.maxSize=2097152
Please remember that the is the size limit of the whole request, which means when you uploading multiple files, the sum of their struts.multipart.maxSize
size must be below the !struts.multipart.maxSize

In order to change theses settings you define a constant in your applications file like so:struts.xml

xml<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE struts PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" "http://struts.
apache.org/dtds/struts-2.0.dtd"> <struts> <constant name="struts.multipart.maxSize" value="1000000" /> ... </struts>

Additionally the interceptor has settings that can be put in place for individual action mappings by customizing your interceptor stack.fileUpload

xml<action name="doUpload" class="com.example.UploadAction"> <interceptor-ref name="basicStack"/> <interceptor-ref name="fileUpload"> <param
name="allowedTypes">text/plain</param> </interceptor-ref> <interceptor-ref name="validation"/> <interceptor-ref name="workflow"/> <result name="
success">good_result.jsp</result> </action>

File Size Limits

There are two separate file size limits. First is which comes from the Struts 2 file. This setting struts.multipart.maxSize default.properties
exists for security reasons to prohibit a malicious user from uploading extremely large files to file up your servers disk space. This setting defaults to
approximately 2 megabytes and should be adjusted to the maximum size file (2 gigs max) that your will need the framework to receive. If you are
uploading more than one file on a form the applies to the combined total, not the individual file sizes. The other setting, struts.multipart.maxSize ma

, is an interceptor setting that is used to ensure a particular Action does not receive a file that is too large. Notice the locations of both settings ximumSize
in the following example:

xml<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE struts PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" "http://struts.
apache.org/dtds/struts-2.0.dtd"> <struts> <constant name="struts.multipart.maxSize" value="1000000" /> <action name="doUpload" class="com.example.
UploadAction"> <interceptor-ref name="basicStack"/> <interceptor-ref name="fileUpload"> <param name="maximumSize">500000</param> </interceptor-
ref> <interceptor-ref name="validation"/> <interceptor-ref name="workflow"/> <result name="success">good_result.jsp</result> </action> </struts>

File Types

There are two ways to limit the uploaded file type, declaratively and programmatically. To declaratively limit the file type a comma separated list of
allowedTypes can be specified as a fileUpload interceptor param as shown in the following example:

xml<action name="doUpload" class="com.example.UploadAction"> <interceptor-ref name="basicStack"/> <interceptor-ref name="fileUpload"> <param
name="allowedTypes">image/jpeg,image/gif</param> </interceptor-ref> <interceptor-ref name="validation"/> <interceptor-ref name="workflow"/> <result
name="success">good_result.jsp</result> </action>

When the uploaded file type does not match one of the MIME types specified a field error will be created as described in the next section entitled Error
Messages. Programmatically limiting the file type means using the information passed in to your Action class via the setXContentType(String

 method. The benefit to this type of approach would be that it's more flexible and no interceptor configuration would be needed if file sizes contentType)
are keep under 2 megs.

Error Messages

If an error occurs several field errors will be added assuming that the action implements or extends com.opensymphony.xwork2.ValidationAware co
. These error messages are based on several i18n values stored in struts-messages.properties, a default m.opensymphony.xwork2.ActionSupport

i18n file processed for all i18n requests. You can override the text of these messages by providing text for the following keys:

Error Key Description

struts.messages.error.uploading A general error that occurs when the file could not be uploaded

struts.messages.error.file.too.large Occurs when the uploaded file is too large as specified by maximumSize.

struts.messages.error.content.type.not.allowed Occurs when the uploaded file does not match the expected content types specified

struts.messages.error.file.extension.not.allowed Occurs when uploaded file has disallowed extension

struts.messages.upload.error.SizeLimitExceededException Occurs when the upload request (as a whole) exceed configured struts.multipart.
maxSize

struts.messages.upload.error.<Exception class
SimpleName>

Occurs when any other exception took place during file upload process

Temporary Directories

All uploaded files are saved to a temporary directory by the framework before being passed in to an Action. Depending on the allowed file sizes it may be
necessary to have the framework store these temporary files in an alternate location. To do this change to the directory struts.multipart.saveDir
where the uploaded files will be placed. If this property is not set it defaults to . Keep in mind that on some javax.servlet.context.tempdir
operating systems, like Solaris, is memory based and files stored in that directory would consume an amount of RAM approximately equal to the size /tmp
of the uploaded file.

Alternate Libraries

The used by the fileUpload interceptor to handle HTTP POST requests, encoded using the MIME-type multipart/form-data, struts.multipart.parser
can be changed out. Currently there are two choices, jakarta and pell. The jakarta parser is a standard part of the Struts 2 framework needing only its
required libraries added to a project. The pell parser uses Jason Pell's multipart parser instead of the Commons-FileUpload library. The pell parser is a
Struts 2 plugin, for more details see: . There was a third alternative, cos, but it was removed due to licensing incompatibilities.pell multipart plugin

As from Struts version 2.3.18 a new implementation of was added - . It can be used to MultiPartRequest JakartaStreamMultiPartRequest
handle large files, see for more details, but you can simple setWW-3025

<constant name="struts.multipart.parser" value="jakarta-stream" />

in struts.xml to start using it.

Request validation

The is used to define a RegEx to be used to validate if the incoming request is a multipart request. The request struts.multipart.validationRegex
must use the method and match the RegEx, by default the RegEx is defined as follow:POST

^multipart\\/form-data(; boundary=[a-zA-Z0-9]{1,70})?

Please read the for more details, existing Struts parsers support only content type. RFC1341 Multipart section Multipart multipart/form-data
This option is available since Struts 2.3.11.

Disabling file upload support

You can alternatively disable the whole file upload mechanism defining a constant in :struts.xml

xml<constant name="struts.multipart.enabled" value="false"/>

https://cwiki.apache.org/confluence/display/S2PLUGINS/Pell+Multipart+Plugin
https://issues.apache.org/jira/browse/WW-3025
https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html

With this constant in place, Struts will ignore a header and will treat each request as an ordinary http request. This option is available Content-Type
since Struts 2.3.11.

	File Upload

