
Overview

Background
Structure
Defining a Service and Components
Using Stack Inheritance
Example: Implementing a Custom Service

Create and Add the Service
Install the Service (via Ambari Web "Add Services")

Example: Implementing a Custom Client-only Service
Create and Add the Service
Install the Service (via the Ambari REST API)
Install the Service (via Ambari Web "Add Services")

Example: Implementing a Custom Client-only Service (with Configs)
Create and Add the Service to the Stack

Background

The Stack definitions can be found in the source tree at . After you install the Ambari Server, the /ambari-server/src/main/resources/stacks
Stack definitions can be found at /var/lib/ambari-server/resources/stacks

Structure

The structure of a Stack definition is as follows:

|_ stacks
 |_ <stack_name>
 |_ <stack_version>
 metainfo.xml
 |_ hooks
 |_ repos
 repoinfo.xml
 |_ services
 |_ <service_name>
 metainfo.xml
 metrics.json
 |_ configuration
 {configuration files}
 |_ package
 {files, scripts, templates}

Defining a Service and Components

The file in a Service describes the service, the components of the service and the management scripts to use for executing commands. A metainfo.xml
component of a service can be either a , or category. The <category> tells Ambari what default commands should be available MASTER SLAVE CLIENT
to manage and monitor the component.

For each Component you specify the < > to use when executing commands. There is a defined set of default commands the component commandScript
must support.

Component Category Default Lifecycle Commands

MASTER install, start, stop, configure, status

SLAVE install, start, stop, configure, status

CLIENT install, configure, status

Ambari supports different commands scripts written in . The type is used to know how to execute the command scripts. You can also create PYTHON custo
 if there are other commands beyond the default lifecycle commands your component needs to support.m commands

For example, in the YARN Service describes the ResourceManager component as follows in :metainfo.xml

https://github.com/apache/ambari/tree/trunk/ambari-server/src/main/resources/stacks
https://github.com/apache/ambari/blob/trunk/ambari-server/src/main/resources/stacks/HDP/2.0.6/services/YARN/metainfo.xml

 <component>
 <name>RESOURCEMANAGER</name>
 <category>MASTER</category>
 <commandScript>
 <script>scripts/resourcemanager.py</script>
 <scriptType>PYTHON</scriptType>
 <timeout>600</timeout>
 </commandScript>
 <customCommands>
 <customCommand>
 <name>DECOMMISSION</name>
 <commandScript>
 <script>scripts/resourcemanager.py</script>
 <scriptType>PYTHON</scriptType>
 <timeout>600</timeout>
 </commandScript>
 </customCommand>
 </customCommands>
 </component>

The ResourceManager is a MASTER component, and the command script is , which can be found in the scripts/resourcemanager.py services
 directory. That command script is and that script implements the default lifecycle commands as python methods. This is the /YARN/package PYTHON ins

 method for the default command:tall INSTALL

class Resourcemanager(Script):
 def install(self, env):
 self.install_packages(env)
 self.configure(env)

You can also see a custom command is defined , which means there is also a method in that python command script:DECOMMISSION decommission

 def decommission(self, env):
 import params

 ...

 Execute(yarn_refresh_cmd,
 user=yarn_user
)
 pass

Using Stack Inheritance

Stacks can other Stacks in order to share command scripts and configurations. This reduces duplication of code across Stacks with the following:extend

define repositories for the child Stack
add new Services in the child Stack (not in the parent Stack)
override command scripts of the parent Services
override configurations of the parent Services

For example, the so only the changes applicable to are present in that Stack definition. This HDP 2.1 Stack HDP 2.0.6 Stackextends HDP 2.1 Stack
extension is defined in the for HDP 2.1 Stack:metainfo.xml

<metainfo>
 <versions>
 <active>true</active>
 </versions>
 <extends>2.0.6</extends>
</metainfo>

Example: Implementing a Custom Service

https://github.com/apache/ambari/blob/trunk/ambari-server/src/main/resources/stacks/HDP/2.0.6/services/YARN/package/scripts/resourcemanager.py
https://github.com/apache/ambari/blob/trunk/ambari-server/src/main/resources/stacks/HDP/2.1/metainfo.xml

1.

2.

3.

In this example, we will create a custom service called "SAMPLESRV", add it to an existing Stack definition. This service includes MASTER, SLAVE and
CLIENT components.

Create and Add the Service

On the Ambari Server, browse to the directory. In this case, we /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services
will browse to the HDP 2.0 Stack definition.

cd /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services

Create a directory named that will contain the /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/SAMPLESRV
service definition for .SAMPLESRV

mkdir /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/SAMPLESRV
cd /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/SAMPLESRV

Browse to the newly created directory, create a file that describes the new service. For example:SAMPLESRV metainfo.xml

3.

4.

5.

6.

<?xml version="1.0"?>
<metainfo>
 <schemaVersion>2.0</schemaVersion>
 <services>
 <service>
 <name>SAMPLESRV</name>
 <displayName>New Sample Service</displayName>
 <comment>A New Sample Service</comment>
 <version>1.0.0</version>
 <components>
 <component>
 <name>SAMPLESRV_MASTER</name>
 <displayName>Sample Srv Master</displayName>
 <category>MASTER</category>
 <cardinality>1</cardinality>
 <commandScript>
 <script>scripts/master.py</script>
 <scriptType>PYTHON</scriptType>
 <timeout>600</timeout>
 </commandScript>
 </component>
 <component>
 <name>SAMPLESRV_SLAVE</name>
 <displayName>Sample Srv Slave</displayName>
 <category>SLAVE</category>
 <cardinality>1+</cardinality>
 <commandScript>
 <script>scripts/slave.py</script>
 <scriptType>PYTHON</scriptType>
 <timeout>600</timeout>
 </commandScript>
 </component>
 <component>
 <name>SAMPLESRV_CLIENT</name>
 <displayName>Sample Srv Client</displayName>
 <category>CLIENT</category>
 <cardinality>1+</cardinality>
 <commandScript>
 <script>scripts/sample_client.py</script>
 <scriptType>PYTHON</scriptType>
 <timeout>600</timeout>
 </commandScript>
 </component>
 </components>
 <osSpecifics>
 <osSpecific>
 <osFamily>any</osFamily> <!-- note: use osType rather than osFamily for Ambari
1.5.0 and 1.5.1 -->
 </osSpecific>
 </osSpecifics>
 </service>
 </services>
</metainfo>

In the above, my service name is " ", and it contains:SAMPLESRV
one component " "MASTER SAMPLESRV_MASTER
one component " "SLAVE SAMPLESRV_SLAVE
one component " "CLIENT SAMPLESRV_CLIENT

Next, let's create that command script. Create a directory for the command script /var/lib/ambari-server/resources/stacks/HDP/2.
 that we designated in the service metainfo.0.6/services/SAMPLESRV/package/scripts

mkdir -p /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/SAMPLESRV/package/scripts
cd /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/SAMPLESRV/package/scripts

Browse to the scripts directory and create the command script files..py

For example file:master.py

6.

7.

1.
2.

3.
4.
5.
6.
7.

import sys
from resource_management import *
class Master(Script):
 def install(self, env):
 print 'Install the Sample Srv Master';
 def stop(self, env):
 print 'Stop the Sample Srv Master';
 def start(self, env):
 print 'Start the Sample Srv Master';

 def status(self, env):
 print 'Status of the Sample Srv Master';
 def configure(self, env):
 print 'Configure the Sample Srv Master';
if __name__ == "__main__":
 Master().execute()

For example file:slave.py

import sys
from resource_management import *
class Slave(Script):
 def install(self, env):
 print 'Install the Sample Srv Slave';
 def stop(self, env):
 print 'Stop the Sample Srv Slave';
 def start(self, env):
 print 'Start the Sample Srv Slave';
 def status(self, env):
 print 'Status of the Sample Srv Slave';
 def configure(self, env):
 print 'Configure the Sample Srv Slave';
if __name__ == "__main__":
 Slave().execute()

For example file:sample_client.py

import sys
from resource_management import *
class SampleClient(Script):
 def install(self, env):
 print 'Install the Sample Srv Client';
 def configure(self, env):
 print 'Configure the Sample Srv Client';
if __name__ == "__main__":
 SampleClient().execute()

Now, restart Ambari Server for this new service definition to be distributed to all the Agents in the cluster.

ambari-server restart

Install the Service (via Ambari Web "Add Services")

In Ambari Web, browse to Services and click the button in the Service navigation area on the left.Actions
The "Add Services" wizard launches. You will see an option to include "My Sample Service" (which is the of the service as <displayName>
defined in the service file).metainfo.xml
Select "My Sample Service" and click Next.
Assign the "Sample Srv Master" and click Next.
Select the hosts to install the "Sample Srv Client" and click Next.
Once complete, the "My Sample Service" will be available Service navigation area.
If you want to add the "Sample Srv Client" to any hosts, you can browse to Hosts and navigate to a specific host and click "+ Add".

The ability to add custom services via Ambari Web is new as of Ambari 1.7.0.

1.

2.

3.

4.

5.

Example: Implementing a Custom Client-only Service

In this example, we will create a custom service called "TESTSRV", add it to an existing Stack definition and use the Ambari APIs to install/configure the
service. This service is a CLIENT so it has two commands: install and configure.

Create and Add the Service

On the Ambari Server, browse to the directory. In this case, we /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services
will browse to the HDP 2.0 Stack definition.

cd /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services

Create a directory named that will contain the service /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTSRV
definition for .TESTSRV

mkdir /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTSRV
cd /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTSRV

Browse to the newly created directory, create a file that describes the new service. For example:TESTSRV metainfo.xml

<?xml version="1.0"?>
<metainfo>
 <schemaVersion>2.0</schemaVersion>
 <services>
 <service>
 <name>TESTSRV</name>
 <displayName>New Test Service</displayName>
 <comment>A New Test Service</comment>
 <version>0.1.0</version>
 <components>
 <component>
 <name>TEST_CLIENT</name>
 <displayName>New Test Client</displayName>
 <category>CLIENT</category>
 <cardinality>1+</cardinality>
 <commandScript>
 <script>scripts/test_client.py</script>
 <scriptType>PYTHON</scriptType>
 <timeout>600</timeout>
 </commandScript>
 <customCommands>
 <customCommand>
 <name>SOMETHINGCUSTOM</name>
 <commandScript>
 <script>scripts/test_client.py</script>
 <scriptType>PYTHON</scriptType>
 <timeout>600</timeout>
 </commandScript>
 </customCommand>
 </customCommands>
 </component>
 </components>
 <osSpecifics>
 <osSpecific>
 <osFamily>any</osFamily> <!-- note: use osType rather than osFamily for Ambari
1.5.0 and 1.5.1 -->
 </osSpecific>
 </osSpecifics>
 </service>
 </services>
</metainfo>

In the above, my service name is " ", and it contains one component " " that is of component category " ". That TESTSRV TEST_CLIENT CLIENT
client is managed via the command script . Next, let's create that command script.scripts/test_client.py
Create a directory for the command script /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTSRV/package

 that we designated in the service metainfo./scripts

5.

6.

7.

1.

2.

3.

4.

mkdir -p /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTSRV/package/scripts
cd /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTSRV/package/scripts

Browse to the scripts directory and create the file. For example:test_client.py

import sys
from resource_management import *

class TestClient(Script):
 def install(self, env):
 print 'Install the client';
 def configure(self, env):
 print 'Configure the client';
 def somethingcustom(self, env):
 print 'Something custom';

if __name__ == "__main__":
 TestClient().execute()

Now, restart Ambari Server for this new service definition to be distributed to all the Agents in the cluster.

ambari-server restart

Install the Service (via the Ambari REST API)

Add the Service to the Cluster.

POST
/api/v1/clusters/MyCluster/services

{
"ServiceInfo": {
 "service_name":"TESTSRV"
 }
}

Add the Components to the Service. In this case, add TEST_CLIENT to TESTSRV.

POST
/api/v1/clusters/MyCluster/services/TESTSRV/components/TEST_CLIENT

Install the component on all target hosts. For example, to install on and , first c6402.ambari.apache.org c6403.ambari.apache.org
create the host_component resource on the hosts using POST.

POST
/api/v1/clusters/MyCluster/hosts/c6402.ambari.apache.org/host_components/TEST_CLIENT

POST
/api/v1/clusters/MyCluster/hosts/c6403.ambari.apache.org/host_components/TEST_CLIENT

Now have Ambari install the components on all hosts. In this single command, you are instructing Ambari to install all components related to the
service. This call the method in the command script on each host.install()

4.

5.

6.

7.

1.
2.

3.
4.

5.

PUT
/api/v1/clusters/MyCluster/services/TESTSRV

{
 "RequestInfo": {
 "context": "Install Test Srv Client"
 },
 "Body": {
 "ServiceInfo": {
 "state": "INSTALLED"
 }
 }
}

Alternatively, instead of installing all components at the same time, you can explicitly install each host component. In this example, we will
explicitly install the TEST_CLIENT on :c6402.ambari.apache.org

PUT
/api/v1/clusters/MyCluster/hosts/c6402.ambari.apache.org/host_components/TEST_CLIENT

{
 "RequestInfo": {
 "context":"Install Test Srv Client"
 },
 "Body": {
 "HostRoles": {
 "state":"INSTALLED"
 }
 }
}

Use the following to configure the client on the host. This will end up calling the method in the command script.configure()

POST
/api/v1/clusters/MyCluster/requests

{
 "RequestInfo" : {
 "command" : "CONFIGURE",
 "context" : "Config Test Srv Client"
 },
 "Requests/resource_filters": [{
 "service_name" : "TESTSRV",
 "component_name" : "TEST_CLIENT",
 "hosts" : "c6403.ambari.apache.org"
 }]
}

If you want to see which hosts the component is installed.

GET
/api/v1/clusters/MyCluster/components/TEST_CLIENT

Install the Service (via Ambari Web "Add Services")

In Ambari Web, browse to Services and click the button in the Service navigation area on the left.Actions
The "Add Services" wizard launches. You will see an option to include "My Test Service" (which is the of the service as defined <displayName>
in the service file).metainfo.xml
Select "My Test Service" and click Next.
Select the hosts to install the "New Test Client" and click Next.

The ability to add custom services via Ambari Web is new as of Ambari 1.7.0.

5.
6.

1.

2.

3.

4.

5.

6.

Once complete, the "My Test Service" will be available Service navigation area.
If you want to add the "New Test Client" to any hosts, you can browse to Hosts and navigate to a specific host and click "+ Add".

Example: Implementing a Custom Client-only Service (with Configs)

In this example, we will create a custom service called "TESTCONFIGSRV" and add it to an existing Stack definition. This service is a CLIENT so it has
two commands: install and configure. And the service also includes a configuration type "test-config".

Create and Add the Service to the Stack

On the Ambari Server, browse to the directory. In this case, we /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services
will browse to the HDP 2.0 Stack definition.

cd /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services

Create a directory named that will contain the /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTCONFIGSRV
service definition for TESTCONFIGSRV.

mkdir /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTCONFIGSRV
cd /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTCONFIGSRV

Browse to the newly created directory, create a file that describes the new service. For example:TESTCONFIGSRV metainfo.xml

<?xml version="1.0"?>
<metainfo>
 <schemaVersion>2.0</schemaVersion>
 <services>
 <service>
 <name>TESTCONFIGSRV</name>
 <displayName>New Test Config Service</displayName>
 <comment>A New Test Config Service</comment>
 <version>0.1.0</version>
 <components>
 <component>
 <name>TESTCONFIG_CLIENT</name>
 <displayName>New Test Config Client</displayName>
 <category>CLIENT</category>
 <cardinality>1+</cardinality>
 <commandScript>
 <script>scripts/test_client.py</script>
 <scriptType>PYTHON</scriptType>
 <timeout>600</timeout>
 </commandScript>
 </component>
 </components>
 <osSpecifics>
 <osSpecific>
 <osFamily>any</osFamily> <!-- note: use osType rather than osFamily for Ambari
1.5.0 and 1.5.1 -->
 </osSpecific>
 </osSpecifics>
 </service>
 </services>
</metainfo>

In the above, my service name is " ", and it contains one component " " that is of component category "TESTCONFIGSRV TESTCONFIG_CLIENT C
". That client is managed via the command script . Next, let's create that command script.LIENT scripts/test_client.py

Create a directory for the command script /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTCONFIGSRV/pac
 that we designated in the service metainfo .kage/scripts <commandScript>

mkdir -p /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTCONFIGSRV/package/scripts
cd /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTCONFIGSRV/package/scripts

Browse to the scripts directory and create the file. For example:test_client.py

6.

7.

8.

9.

import sys
from resource_management import *

class TestClient(Script):
 def install(self, env):
 print 'Install the config client';
 def configure(self, env):
 print 'Configure the config client';

if __name__ == "__main__":
 TestClient().execute()

Now let's define a config type for this service. Create a directory for the configuration dictionary file /var/lib/ambari-server/resources
./stacks/HDP/2.0.6/services/TESTCONFIGSRV/configuration

mkdir -p /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTCONFIGSRV/configuration
cd /var/lib/ambari-server/resources/stacks/HDP/2.0.6/services/TESTCONFIGSRV/configuration

Browse to the configuration directory and create the file. For example:test-config.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
 <property>
 <name>some.test.property</name>
 <value>this.is.the.default.value</value>
 <description>This is a kool description.</description>
 </property>
</configuration>

Now, restart Ambari Server for this new service definition to be distributed to all the Agents in the cluster.

ambari-server restart

	Overview

