
SpringBatch

Spring Batch Component

The component and support classes provide integration bridge between Camel and infrastructure.spring-batch: Spring Batch

Maven users will need to add the following dependency to their for this component:pom.xml

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-spring-batch</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

URI format

spring-batch:jobName[?options]

Where represents the name of the Spring Batch job located in the Camel registry.jobName

Options

Name Default
Value

Description

jobLaunche
rRef

null Deprecated and will be removed in Camel 3.0! Use jobLauncher=#theName instead.Camel 2.10:

jobLauncher null Camel 2.11.1: Explicitly specifies a to be used from the Camel .JobLauncher Registry

jobFromHea
der

false Camel 2.18: Explicitly defines if the jobName shouls be taken from the headers instead of the URI. The header has
name: CamelSpringBatchJobName

Usage

When Spring Batch component receives the message, it triggers the job execution. The job will be executed using the org.springframework.batch.
 instance resolved according to the following algorithm:core.launch.JobLaucher

if is manually set on the component, then use it.JobLauncher
if option is set on the component, then search Camel for the with the given name. jobLauncherRef Registry JobLauncher Deprecated and
will be removed in Camel 3.0!
if there is registered in the Camel under name, then use it.JobLauncher Registry jobLauncher
if none of the steps above allow to resolve the and there is exactly one instance in the Camel , then use it.JobLauncher JobLauncher Registry

All headers found in the message are passed to the as job parameters. , , and values are copied JobLauncher String Long Double java.util.Date
to the - other data types are converted to Strings.org.springframework.batch.core.JobParametersBuilder

Examples

Triggering the Spring Batch job execution:

from("direct:startBatch").to("spring-batch:myJob");

Triggering the Spring Batch job execution with the set explicitly.JobLauncher

from("direct:startBatch").to("spring-batch:myJob?jobLauncherRef=myJobLauncher");

This component can only be used to define producer endpoints, which means that you cannot use the Spring Batch component in a from()
statement.

http://www.springsource.org/spring-batch
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry

Starting from the Camel instance returned by the is forwarded by the as the output 2.11.1 JobExecution JobLauncher SpringBatchProducer
message. You can use the instance to perform some operations using the Spring Batch API directly.JobExecution

from("direct:startBatch").to("spring-batch:myJob").to("mock:JobExecutions");
...
MockEndpoint mockEndpoint = ...;
JobExecution jobExecution = mockEndpoint.getExchanges().get(0).getIn().getBody(JobExecution.class);
BatchStatus currentJobStatus = jobExecution.getStatus();

Support classes

Apart from the Component, Camel Spring Batch provides also support classes, which can be used to hook into Spring Batch infrastructure.

CamelItemReader

CamelItemReader can be used to read batch data directly from the Camel infrastructure.

For example the snippet below configures Spring Batch to read data from JMS queue.

<bean id="camelReader" class="org.apache.camel.component.spring.batch.support.CamelItemReader">
 <constructor-arg ref="consumerTemplate"/>
 <constructor-arg value="jms:dataQueue"/>
</bean>

<batch:job id="myJob">
 <batch:step id="step">
 <batch:tasklet>
 <batch:chunk reader="camelReader" writer="someWriter" commit-interval="100"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

CamelItemWriter

CamelItemWriter has similar purpose as , but it is dedicated to write chunk of the processed data.CamelItemReader

For example the snippet below configures Spring Batch to read data from JMS queue.

<bean id="camelwriter" class="org.apache.camel.component.spring.batch.support.CamelItemWriter">
 <constructor-arg ref="producerTemplate"/>
 <constructor-arg value="jms:dataQueue"/>
</bean>

<batch:job id="myJob">
 <batch:step id="step">
 <batch:tasklet>
 <batch:chunk reader="someReader" writer="camelwriter" commit-interval="100"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

CamelItemProcessor

CamelItemProcessor is the implementation of Spring Batch interface. The latter org.springframework.batch.item.ItemProcessor
implementation relays on to delegate the processing of the batch item to the Camel infrastructure. The item to process is sent to the Request Reply pattern
Camel endpoint as the body of the message.

For example the snippet below performs simple processing of the batch item using the and the .Direct endpoint Simple expression language

http://camel.apache.org/request-reply.html
http://camel.apache.org/direct.html
http://camel.apache.org/simple.html

<camel:camelContext>
 <camel:route>
 <camel:from uri="direct:processor"/>
 <camel:setExchangePattern pattern="InOut"/>
 <camel:setBody>
 <camel:simple>Processed ${body}</camel:simple>
 </camel:setBody>
 </camel:route>
</camel:camelContext>

<bean id="camelProcessor" class="org.apache.camel.component.spring.batch.support.CamelItemProcessor">
 <constructor-arg ref="producerTemplate"/>
 <constructor-arg value="direct:processor"/>
</bean>

<batch:job id="myJob">
 <batch:step id="step">
 <batch:tasklet>
 <batch:chunk reader="someReader" writer="someWriter" processor="camelProcessor" commit-interval="100"/>
 </batch:tasklet>
 </batch:step>
</batch:job>

CamelJobExecutionListener

CamelJobExecutionListener is the implementation of the interface sending job org.springframework.batch.core.JobExecutionListener
execution events to the Camel endpoint.

The instance produced by the Spring Batch is sent as a body of the message. To distinguish org.springframework.batch.core.JobExecution
between before- and after-callbacks header is set to the or value.SPRING_BATCH_JOB_EVENT_TYPE BEFORE AFTER

The example snippet below sends Spring Batch job execution events to the JMS queue.

<bean id="camelJobExecutionListener" class="org.apache.camel.component.spring.batch.support.
CamelJobExecutionListener">
 <constructor-arg ref="producerTemplate"/>
 <constructor-arg value="jms:batchEventsBus"/>
</bean>

<batch:job id="myJob">
 <batch:step id="step">
 <batch:tasklet>
 <batch:chunk reader="someReader" writer="someWriter" commit-interval="100"/>
 </batch:tasklet>
 </batch:step>
 <batch:listeners>
 <batch:listener ref="camelJobExecutionListener"/>
 </batch:listeners>
</batch:job>

	SpringBatch

