
JMX

JMX Component

Available as of Camel 2.6

Standard JMX Consumer Configuration

Component allows consumers to subscribe to an mbean's Notifications. The component supports passing the Notification object directly through the
Exchange or serializing it to XML according to the schema provided within this project. This is a consumer only component. Exceptions are thrown if you
attempt to create a producer for it.

Maven users will need to add the following dependency to their for this component:pom.xml

xml <dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-jmx</artifactId> <version>x.x.x</version> <!-- use the same version as your
Camel core version --> </dependency>

URI Format

The component can connect to the local platform mbean server with the following URI:

jmx://platform?options

A remote mbean server url can be provided following the initial JMX scheme like so:

jmx:service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi?options

You can append query options to the URI in the following format, ?options=value&option2=value&...

URI Options
confluenceTableSmall

Property Required Default Description

format xml Format for the message body. Either "xml" or "raw". If xml, the notification is serialized to xml. If raw, then the raw java object is set as the
body.

user Credentials for making a remote connection.

password Credentials for making a remote connection.

objectDomain yes The domain for the mbean you're connecting to.

objectName The name key for the mbean you're connecting to. This value is mutually exclusive with the object properties that get passed. (see below)

notificationFilter Reference to a bean that implements the . The #ref syntax should be used to reference the bean via the .NotificationFilter Registry

handback Value to handback to the listener when a notification is received. This value will be put in the message header with the key "jmx.handback"

testConnectionO
nStartup

 true If true, the consumer will throw an exception when unable to establish the JMX connection upon startup. If false, the consumer Camel 2.11
will attempt to establish the JMX connection every 'x' seconds until the connection is made – where 'x' is the configured .reconnectDelay

reconnectOnCo
nnectionFailure

 false If true, the consumer will attempt to reconnect to the JMX server when any connection failure occurs. The consumer will attempt Camel 2.11
to re-establish the JMX connection every 'x' seconds until the connection is made-- where 'x' is the configured .reconnectDelay

reconnectDelay 10
seconds

 The number of seconds to wait before retrying creation of the initial connection or before reconnecting a lost connection.Camel 2.11

ObjectName Construction

The URI must always have the objectDomain property. In addition, the URI must contain either objectName or one or more properties that start with "key."

Domain with Name property

When the objectName property is provided, the following constructor is used to build the ObjectName? for the mbean:

ObjectName(String domain, String key, String value)

The key value in the above will be "name" and the value will be the value of the objectName property.

Domain with Hashtable
ObjectName(String domain, Hashtable<String,String> table)

The Hashtable is constructed by extracting properties that start with "key." The properties will have the "key." prefixed stripped prior to building the
Hashtable. This allows the URI to contain a variable number of properties to identify the mbean.

Example
{snippet:id=e1|lang=java|url=camel/trunk/examples/camel-example-jmx/src/main/java/org/apache/camel/example/jmx/MyRouteBuilder.java}

Full example

https://cwiki.apache.org/confluence/display/CAMEL/Registry
http://camel.apache.org/jmx-component-example.html

Monitor Type Consumer

Available as of Camel 2.8
One popular use case for JMX is creating a monitor bean to monitor an attribute on a deployed bean. This requires writing a few lines of Java code to
create the JMX monitor and deploy it. As shown below:

java CounterMonitor monitor = new CounterMonitor(); monitor.addObservedObject(makeObjectName("simpleBean")); monitor.setObservedAttribute
("MonitorNumber"); monitor.setNotify(true); monitor.setInitThreshold(1); monitor.setGranularityPeriod(500); registerBean(monitor, makeObjectName
("counter")); monitor.start();

The 2.8 version introduces a new type of consumer that automatically creates and registers a monitor bean for the specified objectName and attribute.
Additional endpoint attributes allow the user to specify the attribute to monitor, type of monitor to create, and any other required properties. The code
snippet above is condensed into a set of endpoint properties. The consumer uses these properties to create the CounterMonitor, register it, and then
subscribe to its changes. All of the JMX monitor types are supported.

Example
java from("jmx:platform?objectDomain=myDomain&objectName=simpleBean&" +
"monitorType=counter&observedAttribute=MonitorNumber&initThreshold=1&" + "granularityPeriod=500").to("mock:sink");

The example above will cause a new Monitor Bean to be created and depoyed to the local mbean server that monitors the "MonitorNumber" attribute on
the "simpleBean." Additional types of monitor beans and options are detailed below. The newly deployed monitor bean is automatically undeployed when
the consumer is stopped.

URI Options for Monitor Type

property type applies to description

monitorType enum all one of counter, guage, string

observedAttribut
e

string all the attribute being observed

granualityPeriod long all granularity period (in millis) for the attribute being observed. As per JMX, default is 10
seconds

initThreshold number counter initial threshold value

offset number counter offset value

modulus number counter modulus value

differenceMode boolean counter,
gauge

true if difference should be reported, false for actual value

notifyHigh boolean gauge high notification on/off switch

notifyLow boolean gauge low notification on/off switch

highThreshold number gauge threshold for reporting high notification

lowThreshold number gauge threshold for reporting low notificaton

notifyDiffer boolean string true to fire notification when string differs

notifyMatch boolean string true to fire notification when string matches

stringToCompare string string string to compare against the attribute value

The monitor style consumer is only supported for the local mbean server. JMX does not currently support remote deployment of mbeans without either
having the classes already remotely deployed or an adapter library on both the client and server to facilitate a proxy deployment.

Endpoint See Also

Camel JMX

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint+See+Also
https://cwiki.apache.org/confluence/display/CAMEL/Camel+JMX

	JMX

