
XSLT

XSLT

The component allows you to process a message using an template. This can be ideal when using to generate respopnses for xslt: XSLT Templating
requests.

URI format

xslt:templateName[?options]

Where is the classpath-local URI of the template to invoke; or the complete URL of the remote template. Refer to the templateName Spring
Documentation for more detail of the URI syntax

You can append query options to the URI in the following format, ?option=value&option=value&...

Here are some example URIs

URI Description

xslt:com/acme/mytransform.xsl
refers to the file com/acme/mytransform.xsl on the classpath

xslt:file:///foo/bar.xsl
refers to the file /foo/bar.xsl

xslt:http://acme.com/cheese/foo.xsl
refers to the remote http resource

Maven users will need to add the following dependency to their for this component when using or older:pom.xml Camel 2.8

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-spring</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

From Camel 2.9 onwards the component is provided directly in the camel-core.XSLT

Options
Name Default

Value
Description

conver
ter

null Option to override default . Will lookup for the converter in the . The provided converted must be of type XmlConverter Registry
org.apache.camel.converter.jaxp.XmlConverter.

transf
ormerF
actory

null Option to override default . Will lookup for the transformerFactory in the . The provided transformer TransformerFactory Registry
factory must be of type javax.xml.transform.TransformerFactory.

transf
ormerF
actory
Class

null Option to override default . Will create a TransformerFactoryClass instance and set it to the converter.TransformerFactory

http://www.w3.org/TR/xslt
https://cwiki.apache.org/confluence/display/CAMEL/Templating
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/converter/jaxp/XmlConverter.html
https://cwiki.apache.org/confluence/display/CAMEL/Registry
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html
https://cwiki.apache.org/confluence/display/CAMEL/Registry
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html

uriRes
olverF
actory

Default
XsltUri
Resolve
rFactory

Camel 2.17: Reference to a org.apache.camel.component.xslt. which creates an URI XsltUriResolverFactory
resolver per endpoint.The default implementation returns an instance of org.apache.camel.component.xslt.DefaultXs

 which creates the default URI resolver per ltUriResolverFactory .XsltUriResolverorg.apache.camel.builder.xml
endpoint. The default URI resolver reads XSLT documents from the classpath and the file system. This option instead of the
option shall be used when the URI resolver depends on the resource URI of the root XSLT document specified in uriResolver
the endpoint; for example, if you want to extend the default URI resolver. This option is also available on the XSLT component,
so that you can set the resource resolver factory only once for all endpoints.

uriRes
olver

null Camel 2.3: Allows you to use a custom . Camel will by default use its own javax.xml.transformation.URIResolver
implementation which is capable of loading from classpath.org.apache.camel.builder.xml.XsltUriResolver

result
Handle
rFacto
ry

null Camel 2.3: Allows you to use a custom which is capable of org.apache.camel.builder.xml.ResultHandlerFactory
using custom types.org.apache.camel.builder.xml.ResultHandler

failOn
NullBo
dy

true Camel 2.3: Whether or not to throw an exception if the input body is null.

delete
Output
File

false Camel 2.6: If you have then this option dictates whether or not the output file should be deleted when the output=file Exchan
 is done processing. For example suppose the output file is a temporary file, then it can be a good idea to delete it after use.ge

output string Camel 2.3: Option to specify which output type to use. Possible values are: . The first three string, bytes, DOM, file
options are all in memory based, where as is streamed directly to a . For you specify the file java.io.File file must
filename in the IN header with the key which is also . Also any paths Exchange.XSLT_FILE_NAME CamelXsltFileName
leading to the filename must be created beforehand, otherwise an exception is thrown at runtime.

conten
tCache

true Camel 2.6: Cache for the resource content (the stylesheet file) when it is loaded. If set to Camel will reload the false
stylesheet file on each message processing. This is good for development.
Note: from a cached stylesheet can be forced to reload at runtime via JMX using the Camel 2.9 clearCachedStylesheet
operation.

allowS
tAX

 Camel 2.8.3/2.9: Whether to allow using StAX as the . The option is default in Camel javax.xml.transform.Source false
2.11.3/2.12.2 or older. And default in Camel 2.11.4/2.12.3 onwards.true

transf
ormerC
acheSi
ze

0 Camel 2.9.3/2.10.1: The number of object that are cached for reuse to avoid calls to javax.xml.transform.Transformer T
.emplate.newTransformer()

saxon false Camel 2.11: Whether to use Saxon as the . If enabled then the class transformerFactoryClass net.sf.saxon.
. You would need to add Saxon to the classpath.TransformerFactoryImpl

saxonE
xtensi
onFunc
tions

null Camel 2.17: Allows to configure one or more custom net.sf.saxon.lib.ExtensionFunctionDefinition. You would need to add
Saxon to the classpath. By setting this option, saxon option will be turned out automatically.

errorL
istener

 Camel 2.14: Allows to configure to use a custom . Beware when doing this then the javax.xml.transform.ErrorListener
default error listener which captures any errors or fatal errors and store information on the Exchange as properties is not in use.
So only use this option for special use-cases.

entity
Resolv
er

 Camel 2.18: To use a custom org.xml.sax.EntityResolver with javax.xml.transform.sax.SAXSource.

Using XSLT endpoints

For example you could use something like

from("activemq:My.Queue").
 to("xslt:com/acme/mytransform.xsl");

To use an XSLT template to formulate a response for a message for InOut message exchanges (where there is a header).JMSReplyTo

If you want to use InOnly and consume the message and send it to another destination you could use the following route:

from("activemq:My.Queue").
 to("xslt:com/acme/mytransform.xsl").
 to("activemq:Another.Queue");

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

Getting Parameters into the XSLT to work with

By default, all headers are added as parameters which are available in the XSLT.
To do this you will need to declare the parameter so it is then .useable

<setHeader headerName="myParam"><constant>42</constant></setHeader>
<to uri="xslt:MyTransform.xsl"/>

And the XSLT just needs to declare it at the top level for it to be available:

<xsl: >

 <xsl:param name="myParam"/>

 <xsl:template ...>

Spring XML versions

To use the above examples in Spring XML you would use something like

 <camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
 <route>
 <from uri="activemq:My.Queue"/>
 <to uri="xslt:org/apache/camel/spring/processor/example.xsl"/>
 <to uri="activemq:Another.Queue"/>
 </route>
 </camelContext>

There is a along with if you want a concrete example.test case its Spring XML

Using xsl:include

Camel 2.2 or older
If you use xsl:include in your XSL files then in Camel 2.2 or older it uses the default which means it can only javax.xml.transform.URIResolver
lookup files from file system, and its does that relative from the JVM starting folder.

For example this include:

<xsl:include href="staff_template.xsl"/>

Will lookup the file from the starting folder where the application was started.staff_tempkalte.xsl

Camel 2.3 or newer
Now Camel provides its own implementation of which allows Camel to load included files from the classpath and more intelligent than URIResolver
before.

For example this include:

<xsl:include href="staff_template.xsl"/>

Will now be located relative from the starting endpoint, which for example could be:

.to("xslt:org/apache/camel/component/xslt/staff_include_relative.xsl")

Which means Camel will locate the file in the as .classpath org/apache/camel/component/xslt/staff_template.xsl
This allows you to use xsl include and have xsl files located in the same folder such as we do in the example .org/apache/camel/component/xslt

You can use the following two prefixes or to instruct Camel to look either in classpath or file system. If you omit the prefix then Camel classpath: file:
uses the prefix from the endpoint configuration. If that neither has one, then classpath is assumed.

You can also refer back in the paths such as

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml

 <xsl:include href="../staff_other_template.xsl"/>

Which then will resolve the xsl file under .org/apache/camel/component

Using xsl:include and default prefix

When using xsl:include such as:

<xsl:include href="staff_template.xsl"/>

Then in Camel 2.10.3 and older, then Camel will use "classpath:" as the default prefix, and load the resource from the classpath. This works for most
cases, but if you configure the starting resource to load from file,

.to("xslt:file:etc/xslt/staff_include_relative.xsl")

.. then you would have to prefix all your includes with "file:" as well.

<xsl:include href="file:staff_template.xsl"/>

From Camel 2.10.4 onwards we have made this easier as Camel will use the prefix from the endpoint configuration as the default prefix. So from Camel
2.10.4 onwards you can do:

<xsl:include href="staff_template.xsl"/>

Which will load the staff_template.xsl resource from the file system, as the endpoint was configured with "file:" as prefix.
You can still though explicit configure a prefix, and then mix and match. And have both file and classpath loading. But that would be unusual, as most
people either use file or classpath based resources.

Using Saxon extension functions

Since Saxon 9.2, writing extension functions has been supplemented by a new mechanism, referred to as you can now integrated extension functions
easily use camel:

- Java example:

SimpleRegistry registry = new SimpleRegistry();
registry.put("function1", new MyExtensionFunction1());
registry.put("function2", new MyExtensionFunction2());

CamelContext context = new DefaultCamelContext(registry);
context.addRoutes(new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("direct:start")
 .to("xslt:org/apache/camel/component/xslt/extensions/extensions.xslt?
saxonExtensionFunctions=#function1,#function2");
 }
});

Spring example:

http://www.saxonica.com/html/documentation/extensibility/integratedfunctions

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="direct:extensions"/>
 <to uri="xslt:org/apache/camel/component/xslt/extensions/extensions.xslt?saxonExtensionFunctions=#function1,
#function2"/>
 </route>
</camelContext>

<bean id="function1" class="org.apache.camel.component.xslt.extensions.MyExtensionFunction1"/>
<bean id="function2" class="org.apache.camel.component.xslt.extensions.MyExtensionFunction2"/>

Dynamic stylesheets

To provide a dynamic stylesheet at runtime you can define a dynamic URI. See for more information.How to use a dynamic URI in to()

Available as of Camel 2.9 (removed in 2.11.4, 2.12.3 and 2.13.0)
Camel provides the header which you can use to define a stylesheet to use instead of what is configured on the endpoint URI. CamelXsltResourceUri
This allows you to provide a dynamic stylesheet at runtime.

Accessing warnings, errors and fatalErrors from XSLT ErrorListener

Available as of Camel 2.14

From Camel 2.14 onwards, any warning/error or fatalError is stored on the current Exchange as a property with the keys , Exchange.XSLT_ERROR Excha
, or which allows end users to get hold of any errors happening during transformation.nge.XSLT_FATAL_ERROR Exchange.XSLT_WARNING

For example in the stylesheet below, we want to terminate if a staff has an empty dob field. And to include a custom error message using xsl:message.

 <xsl:template match="/">
 <html>
 <body>
 <xsl:for-each select="staff/programmer">
 <p>Name: <xsl:value-of select="name"/>

 <xsl:if test="dob=''">
 <xsl:message terminate="yes">Error: DOB is an empty string!</xsl:message>
 </xsl:if>
 </p>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>

This information is not available on the Exchange stored as an Exception that contains the message in the method on the exception. The getMessage()

exception is stored on the Exchange as a warning with the key Exchange.XSLT_WARNING.

Notes on using XSLT and Java Versions

Here are some observations from Sameer, a Camel user, which he kindly shared with us:

In case anybody faces issues with the XSLT endpoint please review these points.

I was trying to use an xslt endpoint for a simple transformation from one xml to another using a simple xsl. The output xml kept
appearing (after the xslt processor in the route) with outermost xml tag with no content within.

No explanations show up in the DEBUG logs. On the TRACE logs however I did find some error/warning indicating that the
XMLConverter bean could no be initialized.

After a few hours of cranking my mind, I had to do the following to get it to work (thanks to some posts on the users forum that gave
some clue):

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=25204369

1. Use the transformerFactory option in the route with ("xslt:my-transformer.xsl?transformerFactory=tFactory")
the bean having bean defined in the spring context for tFactory class="org.apache.xalan.xsltc.trax.

.TransformerFactoryImpl"
2. Added the Xalan jar into my maven pom.

My guess is that the default xml parsing mechanism supplied within the JDK (I am using 1.6.0_03) does not work right in this context
and does not throw up any error either. When I switched to Xalan this way it works. This is not a Camel issue, but might need a
mention on the xslt component page.

Another note, jdk 1.6.0_03 ships with JAXB 2.0 while Camel needs 2.1. One workaround is to add the 2.1 jar to the jre/lib
 directory for the jvm or as specified by the container./endorsed

Hope this post saves newbie Camel riders some time.

See Also

Configuring Camel
Component
Endpoint
Getting Started

https://cwiki.apache.org/confluence/display/CAMEL/Configuring+Camel
https://cwiki.apache.org/confluence/display/CAMEL/Component
https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

	XSLT

