JBoss to Geronimo - JDBC Migration

This article will help you migrate JDBC applications developed for JBoss v4 to Apache Geronimo. This article is part of a series of migration articles
covering different types of applications migration.

This article provides details on the JDBC implementation differences between these two application servers as well as a detailed step-by-step migration
procedure for porting JDBC applications from JBoss v4 to Apache Geronimo. To define a common starting point (the source environment), this article
provides steps for deploying the Online Brokerage sample application into the JBoss source environment. Then you will be guided through the application
migration and deployment process in Apache Geronimo.

This article is organized in the following sections:

JDBC implementation analysis
Sample application

The JBoss environment

The Geronimo environment
Step-by-step migration
Summary

JDBC implementation analysis

JDBC implementation may vary from one vendor to another. The purpose of this section is to provide a JDBC specific feature-to-feature comparison
between JBoss and Apache Geronimo so you can clearly identify the differences and plan accordingly before migration.

Given that JBoss and Geronimo both use J2CA connectors for accessing JDBC resources, there will be an overlap of some J2CA features when
comparing the platform specific JDBC features.

Note: Since Geronimo is still in its infancy some of the features provided by JBoss may not yet be implemented in Geronimo.

Feature

JDBC access

JCA
implementation

Apache Geronimo

Geronimo does not have any direct integration with JDBC but supports access
through the generic J2CA framework. The TranQL project has J2CA adapters for
various databases.

Geronimo supports the JCA 1.5 specification and is backward compatible to the JCA
1.0 specification.

JBoss v4

JDBC access in JBoss is through JDBC connectors based on

the JCA specification.

JBoss AS 4.0 implements the JCA (Java Connector
Architecture) 1.5 specification instead of the JCA 1.0 in
JBoss AS 3.2.

Data sources TranQL has generic wrappers for data source, ConnectionPoolDatasource, and Supports 5 types of data sources:
supported XADataSource.
® no-tx-datasource
® |ocal-tx-datasource
® xa-datasource
¢ ha-local-tx-datasource
* ha-xa-datasource
Data source TranQL has specialized drivers for certain databases (including Apache Derby, JBoss has data source failover capabilities implemented
failover Oracle and soon DB2) that provide a tighter integration with the advanced features of = through two data sources.
the driver. 1) ha-local-tx-datasource - for local transactions.
It is at this level that features such as load-balancing and failover would be provided. 2) ha-xa-datasource - for distributed transactions
You can also use a C-JDBC wrapper for providing database clustering and failover.
XA support Supports XA transactions, Local Transactions, and No transaction. Supports XA transactions, Local Transactions, and No
transaction.
Connection The J2CA framework is interceptor based which allows different parts of the You can plug in your own custom connection manager if
Manager connection framework to be plugged in. required.

Configurability

JTA
implementation

Although you cannot plug in a custom connection manager now, this capability can
be added fairly easily.

Transaction support is provided through JOTM and HOWL.

Full support for JTA through JBossJTA.

Connection Custom Geronimo Code and TranQL used for connection pooling and management. JBossCX framework used for connection pooling and
pooling and management.
management

Legacy driver
support

Back to Top

Geronimo also provides this through the TranQL- connector JDBC to JCA wrapper in
Geronimo. Supports JDBC 3.0 and 2.1.

Sample application

JBoss provides connection to RDBMS that have not yet

implemented JCA- JDBC drivers through JCA wrappers for

JDBC drivers.

https://cwiki.apache.org/confluence/download/attachments/5063/brokerage.zip?version=4&modificationDate=1188982780000&api=v2

This article contains a sample application to demonstrate migrating an application from JBoss to Geronimo, called Online Brokerage. It represents an
online trading scenario in which users can buy and sell stocks. The application has the following five pages:

Login Page
Registration Page
User Information Page
Available Stocks Page
User Portfolio Page

The following figure illustrates the application flow:

Buy

Availahble
Login Stocks

View user information

: User
Legin View stocks Information
and porifolio
Register
! v View user information

Register User Portfolio

Sell

First, the user accesses the Login page. From the Login page the user enters the user name and password. If the user name or password is not valid the
application throws an error message and rejects the user's login attempt. If the user name and password are correct, the user is taken to the Available
Stocks page where he/she can view all the stocks that are present for sale at that time.

The user can choose to buy as many stocks as wanted, depending on the available money in the account, by clicking the Buy button.

After the transaction completes successfully the user is brought back to the Available Stocks page where he/she can buy more stocks if required.

If the user has insufficient funds to buy stocks the application will throw an error and will not process the transaction. The error message is shown at the
top of the Available Stocks page. There is a User Info button on this page. On clicking this button the user is taken to the User Info page and shown the
user details.

From the Available Stocks page there is a View your Portfolio link that shows all the stocks that the user owns. In that page, the user can select the stocks
and quantity to sell. This page also shows the user's available cash in the User Cash field. If the user tries to sell more stocks than he has, the application
will throw an error. The error message will be shown on the same page. For each successful sale the sale amount is added to the user's cash balance.
The quantity text box shows the quantity of stocks of a particular company that the user has. The Quantity to Sell field allows the user to enter the quantity
of stocks to sell for a specific company. For selling and buying the radio button should be checked. This should be done after entering the values. If either
the quantity to sell textbox is not filled or the selection box is not checked and you press on sell a JavaScript alert will be triggered saying that the required
field is empty. On entering non numeric characters for quantity another alert will be triggered. This behavior is similar for the Available Stocks page as well.

New users can register by clicking the Register button in the login page. In the Registration page the user will enter a user id, user name, password,
address and available cash.

Back to Top

Application classes and JSP pages
The Online Brokerage sample application consists of the following packages:
® com.dev.trade.bo
O Stock- Represents the stock of a company.

O User- Represents the user.

® com.dev.trade.dao

https://cwiki.apache.org/confluence/download/attachments/5063/brokerage.zip?version=4&modificationDate=1188982780000&api=v2

© TradeDAO - Contains all the database access methods.

® com.dev.trade.exception
© DBException - Custom exception class that is thrown for all database exceptions.

® com.dev.trade.servlet
© TradeDispatcherServlet - Dispatches all the requests to the JSPs after performing required database functions.

The Online Brokerage also includes the following JSP pages:

login.jsp - The login page of the application.

error.jsp - The default error page of the application.

register.jsp - The user registration page.

stocks.jsp - The Available Stocks page from where the user can buy stocks.

userstocks.jsp - The user portfolio page which shows the user's stocks. The user can sell stocks from this page.

Back to Top

Tools used

The tools used for developing and building the Online Brokerage application are:

Eclipse

The Eclipse IDE was used for development of the sample application. This is a very powerful and popular open source development tool. Integration plug-
ins are available for both JBoss and Geronimo. Eclipse can be downloaded from the following URL:
http://www.eclipse.org

Apache Ant

Ant is a pure Java build tool. It is used for building the war files and populating the database for the Online Brokerage application. Ant can be downloaded
from the following URL:
http://ant.apache.org

Back to Top

Sample database

The database used for demostrating this application is MySQL. The sample database name is tradedb and it consists of the following three tables,
STOCKS, USERS and TRADINGACCOUNT. The fields for each of these tables are described below.

Table Name Fields

STOCKS ID (PRIMARY KEY)
NAME
PRICE

USERS USERID (PRIMARY KEY)
NAME
PASSWORD
ADDRESS
CASH
TRADINGACCOUN | USERID

T STOCKID
QUANTITY

The TRADINGACCOUNT table is used to store the stocks that are owned by each user. The USERS and STOCKS tables are used to store the user and
stock details. Because this is just a sample application the amount of money that a user has is entered during user registration by the user itself.

The DDL file used for populating this database is db.sql and it is located in the brokerage/sql directory.

Back to Top

The JBoss environment

This section shows you how and where the sample JBoss reference environment was installed so you can map this scenario to your own implementation.

Detailed instructions for installing, configuring, and managing JBoss are provided in the product documentation. Check the product Web site for the most
updated documents.

The following list highlights the general tasks you will need to complete to install and configure the initial environment as the starting point for deploying the
sample application.

http://www.eclipse.org
http://ant.apache.org

1. Download and install JBoss v4 as explained in the product documentation guides. From now on the installation directory will be referred as <jboss
_home>

2. Create a copy of the default JBoss v4 application server. Copy recursively <jboss_home>\server\default to <jpboss_home>\server\<your_serve
r_name>

3. Start the new server by running the run. sh -c <your_server _nane> command from the <jboss_home>\bin directory.

4. Once the server is started, you can verify that it is running by opening a Web browser and pointing it to this URL: http://localhost:8080. You should
see the JBoss Welcome window and be able to access the JBoss console.

5. Once the application server is up and running, the next step is to install and configure all the remaining prerequisite software required by the
sample application. This step is described in the following section.

Back to Top

Install and configure prerequisite software

In order to build and run the Online Brokerage application included in this article, you need to install and configure the build tool and the database that is
used by the application.

Install the database

As mentioned earlier in the article, this application is using the MySQL database that can be downloaded from the following URL:
http://www.mysqgl.com

The Installation and configuration of MySQL is fairly intuitive and it is well documented in the MySQL Reference Manual available at the following URL:

http://dev.mysgl.com/doc/mysql/en

Note: During the instance configuration | modified the security settings and specified "password" as the password for the root user. This user ID and
password will later be used for accessing the database from the sample application.

Create sample database

Once the MySQL instance is configured you need to create the sample database that will be used by the Online Brokerage application. From a command
line, type the following command to start the MySQL monitor:

nysql -u root -ppassword
Note that there is no blank between the flag -p and the password.

This will bring up the MySQL command interface as shown in the following example:

MySQL monitor interface

Wl come to the MYSQL nonitor. Comrands end with ; or \g.
Your MySQ. connection id is 7 to server version: 4.1.14-nt

Type "help;' or "\h'" for help. Type '"\c' to clear the buffer.

nysql >

From the MySQL command interface create the tradedb sample database by typing the following command:

nysql > create database tradedb;

Configure Ant

As mentioned before, Apache Ant is used to build the binaries for the Online Brokerage application. If you do not have Ant installed this is a good time for
doing it and make sure that <ant_home>\bin directory is added to the system's path variable.

Apache Ant can be downloaded from the following URL:
http://ant.apache.org

Back to Top

Configure resources

In order to successfully build and deploy the Online Brokerage application and database, you will first need to configure some resources. This section
describes how to configure a MySQL data source in JBoss.

Data source

http://localhost:8080
http://www.mysql.com
http://dev.mysql.com/doc/mysql/en
http://ant.apache.org

The Online Brokerage application is a Web application that uses a data source to connect to the MySQL database. To use JBoss with MySQL you need to
copy the MySQL driver into the JBoss server classpath. The driver, which is provided by the database vendor, is called Connector/J 3.0 and can be
downloaded from the following URL:

http://dev.mysgl.com/downloads/connector/j/3.1.html

After downloading and extracting the driver, copy the mysql-connector-java-3.1.14 jar file to the <jboss_home>\server\<your_server_name>\lib
directory.

The data source configuration in JBoss is done through an XML configuration file. The JBoss installation contains sample configuration files for many
popular databases including MySQL.

The sample data source configuration file for MySQL is mysql-ds.xml and it is located in the <jboss_home>\docs\examples\jca directory:

Copy the mysqgl-ds.xml file to the deploy directory of your JBoss server (<j boss_honme>\ ser ver\ <your _ser ver _nanme>\ depl oy) and edit it as shown
in the following example:

Update the mysql-ds.xml file

<j ndi - nane>j dbc/ Tr adeDB</ j ndi - nane>

<connection-url >jdbc: nmysql :/ /| ocal host: 3306/t radedb</ connecti on-url >
<driver-class>comnysql .jdbc. Driver</driver-class>

<user - name>r oot </ user - nanme>

<passwor d>passwor d</ passwor d>

<exception-sorter-class-nanme>

org. j boss. resource. adapt er. j dbc. vendor. MySQLExcepti onSort er

</ exception-sorter-class-nane>

Delete all the other tags inside the <local-tx-datasource> tag and save the file. JBoss will automatically deploy the data source.

Back to Top

Build the sample application

The Online Brokerage application included with this article provides an Ant script that you will use in order to build the application and populate the
database. Download the Online Brokerage application from the following link:

Online Brokerage

After extracting the zip file, a brokerage directory is created. In that directory open the build.properties file and edit the properties to match your
environment as shown in the following example:

Update the build.properties file

Repl ace server.nane with either jboss or geronino depending on which server to depl oy.
server. name=j boss

#Repl ace <JAVA_HOVE> with your JDK home directory

j ava. home=<JAVA_HOVE>

#Repl ace <JBOSS HOVE> with the root directory for your specific JBoss server <jboss_hone>\servers\<server_nane>
j boss. hone=<JBOSS_HOVE>

#Repl ace <GERONI MO HOVE> with the root directory for Geroninp

ger oni no. home=<GERONI MO_HOVE>

#fully qualified nanme of the JDBC driver class

db. driver=com nysql .jdbc. Driver

#dat abase URL

db. url =j dbc: nmysql : / /1 ocal host: 3306/t radedb

#dat abase userld

db. useri d=r oot

#dat abase password

db. passwor d=password

#script files for creating the tables

sql . fil e=sqgl/db. sql

#l ocation of the jdbc driver jar.

driver. cl asspat h=<j boss_honme>/ server/ <your _server_nane>/|i b/ nmysql -connector-java-3.1.14-bin.jar

1 When specifying the driver.classpath in the build.properties file, make sure to use just the forward slash "/* , otherwise the build will not find the
jar file.

http://dev.mysql.com/downloads/connector/j/3.1.html
https://cwiki.apache.org/confluence/download/attachments/5063/brokerage.zip?version=4&modificationDate=1188982780000&api=v2

From a command prompt or shell go to the brokerage directory and run ant. This will build the war file and place it directly in the brokerage directory. The
war created by the ant build contains a JBoss specific deployment descriptor, the jboss-web.xml file in the WEB-INF directory of the WAR is shown in the
following example.

JBoss deployment descriptor

<?xm version="1.0" encodi ng="UTF-8"?>
<j boss-web>
<cont ext - r oot >/ br oker age</ cont ext - r oot >
<resource-ref>
<res-ref-name>j dbc/ TradeDB</r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<j ndi - nane>j ava: j dbc/ Tr adeDB</ j ndi - nane>
</resource-ref>
</ j boss-web>

The resource-ref element is used to map the resource referred to by the name jdbc/TradeDB in the web.xml file to the resource with the JNDI name java:
jdbc/TradeDB i.e. the MySQL datasource.

Back to Top

Deploy the sample application

To deploy the Online Brokerage application in JBoss, copy the brokerage.war file you just built with Ant to the following directory:

<j boss_hone>\ server\ <your _server _nane>\ depl oy

If JBoss is already started, it will automatically deploy and start the application; otherwise, the application will be deployed and started at the next startup.

Back to Top

Test the sample application
To test the application, open a Web browser and access the following URL:
http://localhost:8080/brokerage

This brings up the login screen of the Online Brokerage application. Enter j2ee as the user name and password as the password and click on login. This
takes you to the available stocks page illustrated in the following figure. The application is now configured and running.

http://localhost:8080/brokerage

%) Available Stocks - Mozilla Firefox =13

Ble Edt View Go Bookmaks Tooks Help _

- - &)) |0 hitpiifocahostaosofbrokerage fogn v @ s [G |

L| Customilze Links || FreeHotmail || Windows Media | | Windows : N
Online Brokerage - Available Stocks
Stock Mame Stock Price Quantity Euy
BTDA 1.0 i | ©
Hitech Software 2.0 | Ke!
Eill's Cold Storage 30 | | O
Colonel's Fried Chicken 3000 | | O
Toye Motors 300 | | O
Timbuctoo Airlines 53.0 | | ©
Happy Undertakers 730 | Ke)
Wacko Brothers 54.0 | | O
Mental Studios 456.0 i | ©
ASFG 54.89 | | ©
BFG 564.5 ! | O
Mack 34445 | | O
Eonan & Sons 75 | | O
Bulls & Bears 553.4 | | O
HGHU 4560 | | O
GRASF 28.0 | | O
TTTM 77.0 i | ©
View your Fortfolio

Done

@ Pro Tip

If you want to use another root password for the database, replace the occurrences of 'password' with the required password. This has to be
changed in the following three places:

1. MySQL instance configuration.
2. Data source configuration file.
3. build.properties file used by the Ant build script.

Back to Top

The Geronimo environment

Download and install Geronimo from the following URL:

http://geronimo.apache.org/downloads.html

The release notes available there provide clear instructions on system requirements and how to install and start Geronimo. Throughout the rest of this
article we will refer to the Geronimo installation directory as <geronimo_home>.

(D TCP/IP ports conflict

If you are planning to run JBoss and Geronimo on the same machine consider to change the default service ports on, at least, one of these
servers.

Back to Top

Configure resources

In Geronimo the JDBC resources are implemented using J2EE connectors. Therefore, you need to write a Geronimo specific deployment plan for
deploying a JDBC datasource. Additionally, while doing the deployment you need to provide the deployer with the tranqgl-connector-1.1.rar file. This RAR
file contains the connection pool management logic for Geronimo.

For running the Online Brokerage application in Geronimo, you will be using the same MySQL database that was used with JBoss. So the only task you
need to do in order to prepare the Geronimo environment is to configure the data source.

Configure the data source

The first thing you need to do is to copy the MySQL database driver into the Geronimo repository so that you can refer to it in the data source deployment
plan.

The Geronimo repository is located at <geronimo_home>/repository. Inside this directory, create a directory called mysql/jars and copy the mysq|l-
connector-java-3.1.14-bin jar file into it. Now, you need to create the data source deployment plan.
@ Different types of data sources
There are three types of data sources that Geronimo supports:
® Global data source - Visible to all the applications on a Geronimo Instance.
® Application scoped data source - Visible to a single application within which it is defined.

® Module scoped data source - Visible to a single module within which it is defined.

For this migration exercise you will be using a Global data source. For instructions on configuring and using the other two types of data sources
see the the following developerWorks article:

http://www.ibm.com/developerworks/opensource/library/os-ag-jdbc/

Back to Top

Create the data source deployment plan

First, create an xml file called mysql-geronimo-plan.xml. Copy the plan shown in the following example and paste it in the xml file.

http://geronimo.apache.org/downloads.html
http://www.ibm.com/developerworks/opensource/library/os-ag-jdbc/

Data source deployment plan

<?xm version="1.0"?>

<connector xm ns="http://geroni npo. apache. org/ xnl / ns/j 2ee/ connect or"
confi gl d="ger oni no/ j dbcdat asource/ 1. 0/ car ™"
parent | d="geroni no/j 2ee-server/ 1.0/ car">
<dependency>
<gr oupl d>nysql </ gr oupl d>
<artifactld>mysql -connector-java</artifactld>
<versi on>3. 1. 14- bi n</ ver si on>
</ dependency>
<r esour ceadapt er >
<out bound- r esour ceadapt er >
<connection-definition>
<connectionfactory-interface>
j avax. sql . Dat aSour ce
</ connectionfactory-interface>
<connecti ondefinition-instance>
<nane>Tr adeDS</ nane>
<confi g-property-setting nanme="User Name">
r oot
</ confi g-property-setting>
<confi g-property-setting name="Password">
password
</ confi g- property-setting>
<confi g-property-setting nanme="Driver">
com nysql . jdbc. Driver
</ confi g-property-setting>
<confi g- property-setti ng nane="Connecti onURL" >
jdbc: nmysql ://1 ocal host: 3306/t radedb
</ confi g-property-setting>
<confi g- property-setting nane="Conmni t Bef or eAut oconmmi t ">
fal se
</ config-property-setting>
<confi g-property-setti ng nane="Excepti onSorterC ass">
org.trangl . connector. NoExcepti onsAreFat al Sorter
</ confi g-property-setting>

<connect i onmanager >
<l ocal -transaction/ >
<si ngl e- pool >
<max- si ze>10</ max- si ze>
<m n- si ze>0</ m n-si ze>
<bl ocki ng-timeout-nmilliseconds>
5000
</ bl ocking-tinmeout-mlliseconds>
<i dl e-ti neout - m nut es>
30
</idl e-tineout-m nutes>
<mat ch- one/ >
</ si ngl e- pool >
</ connect i onmanager >
</ connecti ondefinition-instance>
</ connection-definition>
</ out bound- r esour ceadapt er >
</ resour ceadapt er >
</ connect or >

The listing above shows the plan for deploying a J2EE connector which will provide JDBC access to the database. The root element is the <connector>
element. This element has the following four attributes:

® xmins - specifies the XML namespace.
® configld - specifies the name Geronimo uses to refer to the connector internally.
® parentld - specifies the parent of this configuration.

Other important elements and attributes are:

connectionfactory-interface - Must be javax.sql.DataSource.

connectiondefinition-instance - Contains the configuration properties required to connect to the database.

connectionmanager - Contains the configuration settings for the geronimo connection manager.

config-property-setting - Specifies the value of a single configuration property of the connector.

name - Name of the data source.

local-transaction - The presence of this element enables the resource adapter to support local transactions. If the 'no-transaction' element is

present instead of 'local-transaction’, then the resource adapter will not support transactions. If the 'xa-transaction' element is present instead of

'local-transaction’, then the resource adapter will support xa-transactions.

® single-pool - Contains the connection pool configuration properties such as max-size and min-size for a single pool. If the 'no-pool' element is
present instead of 'single-pool’, then the connections will not be pooled. If 'partitioned-pool' element is present instead of 'single-pool’, then there
will be a number of connection pools based on the partition type.

® max-size - Maximum number of connections allowed simultaneously.

® min-size - Minimum size of the connection pool.

® blocking-timeout-milliseconds - Time for which a caller will be made to wait for a connection, if all the connections in the pool are currently in use,
before throwing an exception.

® jdle-timeout-minutes - Time in minutes after which a connection will timeout if it is idle.

The following table shows the configuration properties that are specified by the config-property-setting element.

Configuration Meaning
Property
Driver Fully qualified class name of the JDBC driver.

ConnectionURL The JDBC connection URL. This can contain parameters when supported by the driver. For example, for MySQL to use named pipes instead of TCP
/IP you can attach ?socket Fact or y=com nysql . j dbc. NanmedPi peSocket Fact ory to the JDBC connection URL.

UserName The user name needed to connect to the database.
Password The password needed to connect to the database.

CommitBeforeAut ' In case the JDBC driver does not commit the pending data changes when set Aut oConmi t (true) is called.
ocommit

ExceptionSorterCl = To provide information to the pool whether the Exceptions that occur are fatal or not.
ass

After creating the MySQL deployment plan we need to deploy the connection pool datasource by running the deployer tool.
Start the Geronimo Instance as the deployer tool requires the server to be up and running.
From a command line change directory to <geronimo_home>/bin and run the following command:

./ depl oyer.cnd --user system --password manager depl oy <brokerage_honme>\ pl an\ nysql - ger oni no- pl an. xm
<geroni no_home>\reposi tory\trangl\rars\trangl -connector-1.1.rar

where brokerage_home is the path of the brokerage directory.This will deploy the data source.
Now you are ready to proceed with the migration.

Back to Top

Step-by-step migration

Geronimo does not support accessing external resources(JDBC datasources) by setting JNDI properties at runtime as shown in the following example:

Context ctx = null;
Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, "Geroninmp specific factory");
env. put (Cont ext. PROVI DER_URL, "provider URL for geronino");
ctx = new I nitial Context(env)

This is because reference resolution is done at deploy time and is based on the JSR-77 object names of the target component. In order to migrate the
Online Brokerage application to Geronimo, you first need to replace the jboss-web.xml file with a geronimo-web.xml file which is the Geronimo-specific
descriptor file.

The geronimo-web.xml file is located in the <brokerage_home>\web\descriptors\geronimo directory and looks like the following example.

geronimo-web.xml

<?xm version="1.0" encodi ng="1S0O 8859-1"?>
<web-app xm ns="http://geronino. apache. org/ xm / ns/ web"

xm ns: nam ng="http://geroni mo. apache. or g/ xn / ns/ nani ng"

confi gl d="ger oni no/ Br oker ageApp/ 1. 0/ car" parent|d="geroni no/j dbcdat asource/ 1. 0/ car">
<cont ext - r oot >/ br oker age</ cont ext - r oot >
<nani ng: resour ce-ref>

<nami ng: r ef - name>j dbc/ Tr adeDB</ nam ng: r ef - nane>
<nam ng: resour ce-| i nk>Tr adeDS</ nani ng: r esour ce- | i nk>

</ nam ng: resource-ref >
</ web- app>

As shown in the example, the parent for this configuration is the MySQL J2EE connector. The naming:resource-ref element maps the TradeDS data
source to the name jdbc/TradeDB. The context-root element gives the context-root of the application.

These are the only changes required to run this application on Geronimo.

In order to build the .war file for Geronimo, you can modify the build.properties file that is provided with the sample application to remove the jboss-web.xml
and include the geronimo-web.xml. This is done by changing the server.name property to geronimo. Also you need to specify the property geronimo.
home in the build script.

The two values that you need to modify are:

server. nane=ger oni no
ger oni no. hone=<ger oni no_hone>

The build.properties is used by the build script to pick up the J2EE specs for Geronimo. If your jposs.home property is still valid, it is not required to set
this property. If this property is not set and the jboss.home is also not valid then you will get compilation errors. You also need to set the driver.classpath
to point to the new driver jar. Now from the command prompt go to the brokerage directory and run ant. This builds the war file and places it directly in the
brokerage directory.

Back to Top

Deploy the migrated sample application

To deploy the migrated Online Brokerage application, make sure the Geronimo server is up and running.
From a command line, change directory to <geronimo_home> and type the following command:

./ depl oyer --user system --password nanager depl oy <brokerage_hone>/ br oker age. war
Once the application is deployed, open a Web browser and access the following URL:
http://localhost:8080/brokerage

Login with the same user name and password you used when testing the application from JBoss.

Back to Top

Summary

This article has shown you how to migrate a sample application, from JBoss to the Apache Geronimo application server. You followed step-by-step
instructions to build the application, deploy and run it, and then migrate it to the Geronimo environment.

The following list summarizes the major differences found during this sample application migration.

1. In the Geronimo specific deployment descriptor the resource reference name is mapped to the name of the datasource unlike in the JBoss
specific deployment descriptor where the resource name is mapped to the JNDI name of the datasource.

2. In order to deploy a datasource in JBoss you need to just copy the configuration file to the deploy directory but in Geronimo you need to use the
deployer tool.

3. At this time, Geronimo does not support accessing external resources (i.e.:JDBC datasources) by setting JNDI properties at runtime. This
resources need to be specified at deployment time.

Back to Top

http://localhost:8080/brokerage

	JBoss to Geronimo - JDBC Migration

