
Using CamelProxy

Using CamelProxy

Camel allows you to proxy a producer sending to an by a regular interface. Then when clients using this interface can work with it as if its regular Endpoint
java code but in reality its proxied and does a to a given endpoint.Request Reply

Proxy from Spring

You can define a proxy in the spring XML file as shown below{snippet:id=e1|lang=xml|url=camel/trunk/components/camel-spring/src/test/resources/org
Now the client can grab this bean using regular spring bean coding and invoke it as if its just /apache/camel/spring/config/AnotherCamelProxyTest.xml}

another bean.
The code is based on an unit test but proves the point:{snippet:id=e1|lang=java|url=camel/trunk/components/camel-spring/src/test/java/org/apache/camel
/spring/config/AnotherCamelProxyTest.java}

Proxy from Java

You can also create a proxy from regular Java using a as shown below:org.apache.camel.component.bean.ProxyHelper

Endpoint endpoint = context.getEndpoint("direct:start"); MyProxySender sender = ProxyHelper.createProxy(endpoint, MyProxySender.class);

In you can use which may be easier to use than ProxyHelper:Camel 2.3 org.apache.camel.builder.ProxyBuilder {snippet:
id=e4|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/component/bean/BeanProxyTest.java}

Proxy with Annotation

Another way to configure the proxy from java is by using the @Produce annotation. Also see .POJO Producing

@Produce(uri="direct:start") MyProxySender sender;

This basically does the same as ProxyHelper.createProxy.

What is send on the Message

When using a proxy Camel will send the message payload as a object (*Camel 2.15 or org.apache.camel.component.bean.BeanInvocation

older) which holds the details of which method was invoked and what the argument was. From onwards Camel parameter binding is enabled Camel 2.16
by default, which will use binding information from the method signature parameters to bind to the Exchange/Message with the following annotations

Annotation Parameter
Type

Parameter binds to

@Body Object Binds the parameter to the message body

@Header(name) Object Binds the parameter to the message header with the given name

@Headers Map Binds the parameter to the message headers. The parameter is expected to be of java.util.Map
type.

@ExchangeProperty
(name)

Object Binds the parameter to the exchange property with the given name

If a parameter does not have any annotation then the parameter is bound to the message body.

For example given the following interface

public interface MyAuditService { void auditMessage(@Header("uuid") String uuid, @Body String body); }

Then from Java DSL we can create a proxy and call the method

// must enable binding on proxy MyAuditService service = new ProxyBuilder(context).endpoint("jms:queue:foo").build(MyAuditService.class); service.
auditMessage("1234", "Hello World");

Which will send the message to the JMS queue foo, with the header(uuid)=1234 and body=Hello World. The message is sent as InOnly as the method is
void.

The old behavior can be enabled by setting binding off, such as:

// must enable binding on proxy MyAuditService service = new ProxyBuilder(context).endpoint("jms:queue:foo").binding(false).build(MyAuditService.class);
service.auditMessage("1234", "Hello World");

Turning the BeanInvocation into a first class payload

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Request+Reply
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing

Available as of Camel 2.1

If you proxied method signature only have one parameter such as:

String hello(String name);

Then it gives another advantage in Camel as it allows Camel to regard the value passed in to this single parameter as the payload. In other words if real
you pass in to the hello method, then Camel can that as a payload with the value of . This gives you a great Camel see java.lang.String Camel
advantage as you can use the proxy as first class services with Camel.

You can proxy Camel and let clients use the pure and clean interfaces as if Camel newer existed. Then Camel can proxy the invocation and receive the
input passed into the single method parameter and regard that as if it was the message payload.just

From onwards this is improved as binding is enabled out of the box, where Camel binds to the message parameters using the annotation Camel 2.16
listed in the table above. If a parameter has no annotation then the parameter is bound to the message body.

Okay lets try that with an example

Example with proxy using single parameter methods.

At first we have the interface we wish to proxy{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/component/bean
Notice that all methods have single parameters. The return type is optional, as you can see one of them is void./OrderService.java}

Also what you should know is that Camel uses its mechanism to adapt to the types defined on the methods.Type Converter

This allows us to easily use and types with no hazzle.org.w3c.dom.Document String

Okay then we have the following route where we route using a that is XML based. See that we use in the choices to route the Content Based Router XPath
message depending on its a book order or not.{snippet:id=e1|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/component/bean

Now there is a couple of tests that shows using the Camel Proxy how we can easily invoke the proxy and do not know its actually /BeanProxyTest.java}
Camel doing some routing underneath.{snippet:id=e2|lang=java|url=camel/trunk/camel-core/src/test/java/org/apache/camel/component/bean

And this one below shows using different types that Camel adapts to./BeanProxyTest.java} {snippet:id=e3|lang=java|url=camel/trunk/camel-core/src/test
Isn't this cool?/java/org/apache/camel/component/bean/BeanProxyTest.java}

Asynchronous using Future

Available as of Camel 2.8

By default the invocation is synchronous when invoked from the client. If you want this to be asynchronous you define the return type to be of Camel Proxy
 type. The is a handle to the task which the client can use to obtain the result.java.util.concurrent.Future Future

For example given this client interface{snippet:id=e1|lang=java|title=Client Interface|url=camel/trunk/camel-core/src/test/java/org/apache/camel/component
The client can use this with a as shown from the following snippet from an unit test:/bean/ProxyReturnFutureTest.java} Camel Proxy {snippet:

This allows id=e2|lang=java|title=Using Client|url=camel/trunk/camel-core/src/test/java/org/apache/camel/component/bean/ProxyReturnFutureTest.java}
you to fully define your client API without any Camel dependency at all, and decide whether the invocation should be synchronous or asynchronous.

If the Client is asynchronous (return type is Future) then Camel will continue processing the invocation using a thread pool which is being looked up using
the key . Its a shared thread pool for all in the . You can define a with the id CamelInvocationHandler Camel Proxy CamelContext thread pool profile Ca

 to configure settings such as min/max threads etc.melInvocationHandler

See also

Bean
User Guide
Tutorial-JmsRemoting

https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/Content+Based+Router
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/CamelContext
https://cwiki.apache.org/confluence/display/CAMEL/Threading+Model
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/User+Guide
https://cwiki.apache.org/confluence/display/CAMEL/Tutorial-JmsRemoting

	Using CamelProxy

