
LanguageManual UDF
Hive Operators and User-Defined Functions (UDFs)

Hive Operators and User-Defined Functions (UDFs)
Built-in Operators

Operators Precedences
Relational Operators
Arithmetic Operators
Logical Operators
String Operators
Complex Type Constructors
Operators on Complex Types

Built-in Functions
Mathematical Functions

Mathematical Functions and Operators for Decimal Datatypes
Collection Functions
Type Conversion Functions
Date Functions
Conditional Functions
String Functions
Data Masking Functions
Misc. Functions

xpath
get_json_object

Built-in Aggregate Functions (UDAF)
Built-in Table-Generating Functions (UDTF)

Usage Examples
explode (array)
explode (map)
posexplode (array)
inline (array of structs)
stack (values)

explode
posexplode
json_tuple
parse_url_tuple

GROUPing and SORTing on f(column)
Utility Functions
UDF internals
Creating Custom UDFs

In or the , use the commands below to show the latest documentation:Beeline CLI

SHOW FUNCTIONS;
DESCRIBE FUNCTION <function_name>;
DESCRIBE FUNCTION EXTENDED <function_name>;

Built-in Operators

Operators Precedences

Example Operators Description

A[B] , A.identifier bracket_op([]), dot(.) element selector, dot

Case-insensitive

All Hive keywords are case-insensitive, including the names of Hive operators and functions.

Bug for expression caching when UDF nested in UDF or function

When is set to true (which is the default) a UDF can give incorrect results if it is nested in another UDF or a Hive hive.cache.expr.evaluation
function. This bug affects releases 0.12.0, 0.13.0, and 0.13.1. Release 0.14.0 fixed the bug ().HIVE-7314

The problem relates to the UDF's implementation of the getDisplayString method, as in the Hive user mailing list.discussed

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline�NewCommandLineShell
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Cli
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.cache.expr.evaluation
https://issues.apache.org/jira/browse/HIVE-7314
http://mail-archives.apache.org/mod_mbox/hive-user/201407.mbox/%3cCAEWg7THU-Pr1Dfv_A8VS3Uz5t3ZyJvL0f-bebg4Zb3hXkK-CGQ@mail.gmail.com%3e

-A unary(+), unary(-), unary(~) unary prefix operators

A IS [NOT] (NULL|TRUE|FALSE) IS NULL,IS NOT NULL, ... unary suffix

A ^ B bitwise xor(^) bitwise xor

A * B star(*), divide(/), mod(%), div(DIV) multiplicative operators

A + B plus(+), minus(-) additive operators

A || B string concatenate(||) string concatenate

A & B bitwise and(&) bitwise and

A | B bitwise or(|) bitwise or

Relational Operators

The following operators compare the passed operands and generate a TRUE or FALSE value depending on whether the comparison between the
operands holds.

Operator Operand
types

Description

A = B All primitive
types

TRUE if expression A is equal to expression B otherwise FALSE.

A == B All primitive
types

Synonym for the = operator.

A <=> B All primitive
types

Returns same result with EQUAL(=) operator for non-null operands, but returns TRUE if both are NULL, FALSE if one of
the them is NULL. (As of version .)0.9.0

A <> B All primitive
types

NULL if A or B is NULL, TRUE if expression A is NOT equal to expression B, otherwise FALSE.

A != B All primitive
types

Synonym for the <> operator.

A < B All primitive
types

NULL if A or B is NULL, TRUE if expression A is less than expression B, otherwise FALSE.

A <= B All primitive
types

NULL if A or B is NULL, TRUE if expression A is less than or equal to expression B, otherwise FALSE.

A > B All primitive
types

NULL if A or B is NULL, TRUE if expression A is greater than expression B, otherwise FALSE.

A >= B All primitive
types

NULL if A or B is NULL, TRUE if expression A is greater than or equal to expression B, otherwise FALSE.

A [NOT]
BETWEEN
B AND C

All primitive
types

NULL if A, B or C is NULL, TRUE if A is greater than or equal to B AND A less than or equal to C, otherwise FALSE. This
can be inverted by using the NOT keyword. (As of version .)0.9.0

A IS NULL All types TRUE if expression A evaluates to NULL, otherwise FALSE.

A IS NOT
NULL

All types FALSE if expression A evaluates to NULL, otherwise TRUE.

A IS [NOT]
(TRUE|FAL
SE)

Boolean
types

Evaluates to TRUE only if A mets the condition. (since:3.0.0)
Note: NULL is UNKNOWN, and because of that (UNKNOWN IS TRUE) and (UNKNOWN IS FALSE) both evaluates to
FALSE.

A [NOT]
LIKE B

strings NULL if A or B is NULL, TRUE if string A matches the SQL simple regular expression B, otherwise FALSE. The
comparison is done character by character. The _ character in B matches any character in A (similar to . in posix regular
expressions) while the % character in B matches an arbitrary number of characters in A (similar to .* in posix regular
expressions). For example, 'foobar' like 'foo' evaluates to FALSE whereas 'foobar' like 'foo_ _ _' evaluates to TRUE and so
does 'foobar' like 'foo%'.

A RLIKE B strings NULL if A or B is NULL, TRUE if any (possibly empty) substring of A matches the Java regular expression B, otherwise
FALSE. For example, 'foobar' RLIKE 'foo' evaluates to TRUE and so does 'foobar' RLIKE '^f.*r$'.

A
REGEXP B

strings Same as RLIKE.

Arithmetic Operators

https://issues.apache.org/jira/browse/HIVE-2810
https://issues.apache.org/jira/browse/HIVE-2005
https://issues.apache.org/jira/browse/HIVE-13583

The following operators support various common arithmetic operations on the operands. All return number types; if any of the operands are NULL, then
the result is also NULL.

Operator Operand
types

Description

A + B All number
types

Gives the result of adding A and B. The type of the result is the same as the common parent(in the type hierarchy) of the
types of the operands. For example since every integer is a float, therefore float is a containing type of integer so the +
operator on a float and an int will result in a float.

A - B All number
types

Gives the result of subtracting B from A. The type of the result is the same as the common parent(in the type hierarchy) of
the types of the operands.

A * B All number
types

Gives the result of multiplying A and B. The type of the result is the same as the common parent(in the type hierarchy) of
the types of the operands. Note that if the multiplication causing overflow, you will have to cast one of the operators to a
type higher in the type hierarchy.

A / B All number
types

Gives the result of dividing A by B. The result is a double type in most cases. When A and B are both integers, the result is
a double type except when the configuration parameter is set to "0.13" or "latest" in which case the result is a hive.compat
decimal type.

A DIV B Integer
types

Gives the integer part resulting from dividing A by B. E.g 17 div 3 results in 5.

A % B All number
types

Gives the reminder resulting from dividing A by B. The type of the result is the same as the common parent(in the type
hierarchy) of the types of the operands.

A & B All number
types

Gives the result of bitwise AND of A and B. The type of the result is the same as the common parent(in the type hierarchy)
of the types of the operands.

A | B All number
types

Gives the result of bitwise OR of A and B. The type of the result is the same as the common parent(in the type hierarchy) of
the types of the operands.

A ^ B All number
types

Gives the result of bitwise XOR of A and B. The type of the result is the same as the common parent(in the type hierarchy)
of the types of the operands.

~A All number
types

Gives the result of bitwise NOT of A. The type of the result is the same as the type of A.

Logical Operators

The following operators provide support for creating logical expressions. All of them return boolean TRUE, FALSE, or NULL depending upon the boolean
values of the operands. NULL behaves as an "unknown" flag, so if the result depends on the state of an unknown, the result itself is unknown.

Operator Operand
types

Description

A AND B boolean TRUE if both A and B are TRUE, otherwise FALSE. NULL if A or B is NULL.

A OR B boolean TRUE if either A or B or both are TRUE, FALSE OR NULL is NULL, otherwise FALSE.

NOT A boolean TRUE if A is FALSE or NULL if A is NULL. Otherwise FALSE.

! A boolean Same as NOT A.

A IN (val1, val2, ...) boolean TRUE if A is equal to any of the values. As of Hive 0.13 are supported in IN statements.subqueries

A NOT IN (val1, val2, ...) boolean TRUE if A is not equal to any of the values. As of Hive 0.13 are supported in NOT IN subqueries
statements.

[NOT] EXISTS
(subquery)

TRUE if the the subquery returns at least one row. Supported as of .Hive 0.13

String Operators

Operator Operand types Description

A || B strings Concatenates the operands - shorthand for . Supported as of .concat(A,B) Hive 2.2.0

Complex Type Constructors

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.compat
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SubQueries
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SubQueries
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SubQueries
https://issues.apache.org/jira/browse/HIVE-14580

The following functions construct instances of complex types.

Constructor Function Operands Description

map (key1, value1, key2, value2, ...) Creates a map with the given key/value pairs.

struct (val1, val2, val3, ...) Creates a struct with the given field values. Struct field names will be col1, col2,

named_struct (name1, val1, name2, val2, ...) Creates a struct with the given field names and values. (As of Hive .)0.8.0

array (val1, val2, ...) Creates an array with the given elements.

create_union (tag, val1, val2, ...) Creates a union type with the value that is being pointed to by the tag parameter.

Operators on Complex Types

The following operators provide mechanisms to access elements in Complex Types.

Operator Operand types Description

A[n] A is an Array and n is
an int

Returns the nth element in the array A. The first element has index 0. For example, if A is an array comprising
of ['foo', 'bar'] then A[0] returns 'foo' and A[1] returns 'bar'.

M[key] M is a Map<K, V> and
key has type K

Returns the value corresponding to the key in the map. For example, if M is a map comprising of {'f' -> 'foo', 'b' -
> 'bar', 'all' -> 'foobar'} then M['all'] returns 'foobar'.

S.x S is a struct Returns the x field of S. For example for the struct foobar {int foo, int bar}, foobar.foo returns the integer stored
in the foo field of the struct.

Built-in Functions

Mathematical Functions

The following built-in mathematical functions are supported in Hive; most return NULL when the argument(s) are NULL:

Return
Type

Name (Signature) Description

DOUBLE round(DOUBLE a) Returns the rounded value of .BIGINT a

DOUBLE round(DOUBLE a, INT d) Returns rounded to decimal places.a d

DOUBLE bround(DOUBLE a) Returns the rounded BIGINT value of using HALF_EVEN rounding mode (as of). Also a Hive 1.3.0, 2.0.0
known as Gaussian rounding or bankers' rounding. Example: bround(2.5) = 2, bround(3.5) = 4.

DOUBLE bround(DOUBLE a, INT d) Returns rounded to decimal places using HALF_EVEN rounding mode (as of). a d Hive 1.3.0, 2.0.0
Example: bround(8.25, 1) = 8.2, bround(8.35, 1) = 8.4.

BIGINT floor(DOUBLE a) Returns the maximum value that is equal to or less than BIGINT .a

BIGINT ceil(DOUBLE a), ceiling
(DOUBLE a)

Returns the minimum BIGINT value that is equal to or greater than .a

DOUBLE rand(), rand(INT seed) Returns a random number (that changes from row to row) that is distributed uniformly from 0 to 1.
Specifying the seed will make sure the generated random number sequence is deterministic.

DOUBLE exp(DOUBLE a), exp
(DECIMAL a)

Returns where is the base of the natural logarithmea e . Decimal version added in .Hive 0.13.0

DOUBLE ln(DOUBLE a), ln(DECIMAL
a)

Returns the natural logarithm of the argument a. Decimal version added in .Hive 0.13.0

DOUBLE log10(DOUBLE a), log10
(DECIMAL a)

Returns the base-10 logarithm of the argument a. Decimal version added in .Hive 0.13.0

DOUBLE log2(DOUBLE a), log2
(DECIMAL a)

Returns the base-2 logarithm of the argument a. Decimal version added in .Hive 0.13.0

DOUBLE log(DOUBLE base,
DOUBLE a)

log(DECIMAL base,
DECIMAL a)

Returns the base- logarithm of the argument . base a Decimal versions added in .Hive 0.13.0

https://issues.apache.org/jira/browse/HIVE-1360
https://issues.apache.org/jira/browse/HIVE-11103
https://issues.apache.org/jira/browse/HIVE-11103
https://issues.apache.org/jira/browse/HIVE-6327
https://issues.apache.org/jira/browse/HIVE-6327
https://issues.apache.org/jira/browse/HIVE-6327
https://issues.apache.org/jira/browse/HIVE-6327
https://issues.apache.org/jira/browse/HIVE-6327

DOUBLE pow(DOUBLE a, DOUBLE
p), power(DOUBLE a,
DOUBLE p)

Returns ap.

DOUBLE sqrt(DOUBLE a), sqrt
(DECIMAL a)

Returns the square root of a. Decimal version added in .Hive 0.13.0

STRING bin(BIGINT a) Returns the number in binary format (see http://dev.mysql.com/doc/refman/5.0/en/string-functions.
).html#function_bin

STRING hex(BIGINT a) hex(STRING
a) hex(BINARY a)

If the argument is an or , returns the number as a in hexadecimal format. INT binary hex STRING
Otherwise if the number is a , it converts each character into its hexadecimal representation and STRING
returns the resulting . (See STRING http://dev.mysql.com/doc/refman/5.0/en/string-functions.

, version as of Hive .)html#function_hex BINARY 0.12.0

BINARY unhex(STRING a) Inverse of hex. Interprets each pair of characters as a hexadecimal number and converts to the byte
representation of the number. (version as of Hive , used to return a string.)BINARY 0.12.0

STRING conv(BIGINT num, INT
from_base, INT to_base),
conv(STRING num, INT
from_base, INT to_base)

Converts a number from a given base to another (see http://dev.mysql.com/doc/refman/5.0/en
)./mathematical-functions.html#function_conv

DOUBLE abs(DOUBLE a) Returns the absolute value.

INT or
DOUBLE

pmod(INT a, INT b), pmod
(DOUBLE a, DOUBLE b)

Returns the positive value of .a mod b

DOUBLE sin(DOUBLE a), sin
(DECIMAL a)

Returns the sine of (is in radians)a a . Decimal version added in .Hive 0.13.0

DOUBLE asin(DOUBLE a), asin
(DECIMAL a)

Returns the arc sin of if -1<=a<=1 or NULL otherwisea . Decimal version added in .Hive 0.13.0

DOUBLE cos(DOUBLE a), cos
(DECIMAL a)

Returns the cosine of (is in radians)a a . Decimal version added in .Hive 0.13.0

DOUBLE acos(DOUBLE a), acos
(DECIMAL a)

Returns the arccosine of if -1<=a<=1 or NULL otherwisea . Decimal version added in .Hive 0.13.0

DOUBLE tan(DOUBLE a), tan
(DECIMAL a)

Returns the tangent of (is in radians)a a . Decimal version added in .Hive 0.13.0

DOUBLE atan(DOUBLE a), atan
(DECIMAL a)

Returns the arctangent of a. Decimal version added in .Hive 0.13.0

DOUBLE degrees(DOUBLE a),
degrees(DECIMAL a)

Converts value of from radians to degreesa . Decimal version added in .Hive 0.13.0

DOUBLE radians(DOUBLE a), radians
(DOUBLE a)

Converts value of from degrees to radiansa . Decimal version added in .Hive 0.13.0

INT or
DOUBLE

positive(INT a), positive
(DOUBLE a)

Returns .a

INT or
DOUBLE

negative(INT a), negative
(DOUBLE a)

Returns .-a

DOUBLE
or INT

sign(DOUBLE a), sign
(DECIMAL a)

Returns the sign of as '1.0' (if is positive) or '-1.0' (if is negative), '0.0' otherwise. The decimal version a a a
returns INT instead of DOUBLE. Decimal version added in .Hive 0.13.0

DOUBLE e() Returns the value of .e

DOUBLE pi() Returns the value of .pi

BIGINT factorial(INT a) Returns the factorial of . Valid is [0..20].a (as of Hive 1.2.0) a

DOUBLE cbrt(DOUBLE a) Returns the cube root of double value .a (as of Hive 1.2.0)

INT

BIGINT

shiftleft
(TINYINT|SMALLINT|INT a,
INT b)

shiftleft(BIGINT a, INT)b

Bitwise left shift (as of Hive). Shifts positions to the left.1.2.0 a b

Returns int for tinyint, smallint and int . Returns bigint for bigint .a a

https://issues.apache.org/jira/browse/HIVE-6327
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_bin
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_bin
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_hex
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_hex
https://issues.apache.org/jira/browse/HIVE-2482
https://issues.apache.org/jira/browse/HIVE-2482
http://dev.mysql.com/doc/refman/5.0/en/mathematical-functions.html#function_conv
http://dev.mysql.com/doc/refman/5.0/en/mathematical-functions.html#function_conv
https://issues.apache.org/jira/browse/HIVE-6327
https://issues.apache.org/jira/browse/HIVE-6327
https://issues.apache.org/jira/browse/HIVE-6327
https://issues.apache.org/jira/browse/HIVE-6327
https://issues.apache.org/jira/browse/HIVE-6327
https://issues.apache.org/jira/browse/HIVE-6327
https://issues.apache.org/jira/browse/HIVE-6385
https://issues.apache.org/jira/browse/HIVE-6327
https://issues.apache.org/jira/browse/HIVE-6246
https://issues.apache.org/jira/browse/HIVE-9857
https://issues.apache.org/jira/browse/HIVE-9858
https://issues.apache.org/jira/browse/HIVE-9859

INT

BIGINT

shiftright
(TINYINT|SMALLINT|INT a,
INT)b

shiftright(BIGINT a, INT)b

Bitwise right shift (as of Hive). Shifts positions to the right.1.2.0 a b

Returns int for tinyint, smallint and int . Returns bigint for bigint .a a

INT

BIGINT

shiftrightunsigned(TINYINT|
 a, INT b),SMALLINT|INT

shiftrightunsigned(BIGINT a,
INT b)

Bitwise unsigned right shift (as of Hive). 1.2.0 Shifts a b positions to the right.

Returns int for tinyint, smallint and int . Returns bigint for bigint .a a

T greatest(T v1, T v2, ...) Returns the greatest value of the list of values (as of Hive). Fixed to return NULL when one or more 1.1.0
arguments are NULL, and strict type restriction relaxed, consistent with ">" operator (as of Hive).2.0.0

T least(T v1, T v2, ...) Returns the least value of the list of values (as of Hive). 1.1.0 Fixed to return NULL when one or more
arguments are NULL, and strict type restriction relaxed, consistent with "<" operator (as of Hive 2.0.0).

INT width_bucket(NUMERIC
expr, NUMERIC min_value,
NUMERIC max_value, INT
num_buckets)

Returns an integer between 0 and num_buckets+1 by mapping expr into the ith equally sized bucket.
Buckets are made by dividing [min_value, max_value] into equally sized regions. If expr < min_value, return
1, if expr > max_value return num_buckets+1. See https://docs.oracle.com/cd/B19306_01/server.102
/b14200/functions214.htm (as of Hive 3.0.0)

Mathematical Functions and Operators for Decimal Datatypes

All regular arithmetic operators (such as +, -, *, /) and relevant mathematical UDFs (Floor, Ceil, Round, and many more) have been updated to handle
decimal types. For a list of supported UDFs, see in .Mathematical UDFs Hive Data Types

Collection Functions

The following built-in collection functions are supported in Hive:

Return
Type

Name(Signature) Description

int size(Map<K.V>) Returns the number of elements in the map type.

int size(Array<T>) Returns the number of elements in the array type.

array<K> map_keys(Map<K.V>) Returns an unordered array containing the keys of the input map.

array<V> map_values(Map<K.V>) Returns an unordered array containing the values of the input map.

boolean array_contains(Array<T>,
value)

Returns TRUE if the array contains value.

array<t> sort_array(Array<T>) Sorts the input array in ascending order according to the natural ordering of the array elements and returns
it (as of version).0.9.0

Type Conversion Functions

The following type conversion functions are supported in Hive:

Return
Type

Name
(Signature)

Description

binary binary
(string|binary)

Casts the parameter into a binary.

Expected
"=" to follow
"type"

cast(expr as
<type>)

Converts the results of the expression expr to <type>. For example, cast('1' as BIGINT) will convert the string '1' to its
integral representation. A null is returned if the conversion does not succeed. If cast(expr as boolean) Hive returns true
for a non-empty string.

Date Functions

The following built-in date functions are supported in Hive:

Version

The decimal datatype was introduced in Hive 0.11.0 ().HIVE-2693

https://issues.apache.org/jira/browse/HIVE-9859
https://issues.apache.org/jira/browse/HIVE-9859
https://issues.apache.org/jira/browse/HIVE-9402
https://issues.apache.org/jira/browse/HIVE-12082
https://issues.apache.org/jira/browse/HIVE-9402
https://issues.apache.org/jira/browse/HIVE-12082
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions214.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions214.htm
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types#LanguageManualTypes-MathematicalUDFs
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types#LanguageManualTypes
https://issues.apache.org/jira/browse/HIVE-2279
https://issues.apache.org/jira/browse/HIVE-2693

1.
2.
3.
4.
5.

Return
Type

Name
(Signature)

Description

string from_unixtime
(bigint
unixtime[,
string
pattern])

Converts a number of seconds since epoch (1970-01-01 00:00:00 UTC) to a string representing the timestamp of that
moment in the current time zone(using config "hive.local.time.zone") using the specified pattern. If the pattern is missing
the default is used ('uuuu-MM-dd HH:mm:ss' or yyyy-MM-dd HH:mm:ss'). Example: from_unixtime(0)=1970-01-01 00:00:
00 (hive.local.time.zone=Etc/GMT)

As of Hive 4.0.0 (), the "hive.datetime.formatter" property can be used to control the underlying formatter HIVE-25576
implementation, and as a consequence the accepted patterns and their behavior. Prior versions always used https://docs.

 as the underlying formatter.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

bigint unix_timesta
mp()

Gets current Unix timestamp in seconds. This function is not deterministic and its value is not fixed for the scope of a query
execution, therefore prevents proper optimization of queries - this has been deprecated since 2.0 in favour of
CURRENT_TIMESTAMP constant.

bigint unix_timesta
mp(string
date)

Converts a datetime string to unix time (seconds since epoch) using the default pattern(s). The default accepted patterns
depend on the underlying formatter implementation. The datetime string does not contain a timezone so the conversion
uses the local time zone as specified by "hive.local.time.zone" property. Returns null when the conversion fails. Example:
unix_timestamp('2009-03-20 11:30:01') = 1237573801

As of Hive 4.0.0 (), the "hive.datetime.formatter" property can be used to control the underlying formatter HIVE-25576
implementation, and as a consequence the accepted patterns and their behavior. Prior versions always used https://docs.

 as the underlying formatter.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

bigint unix_timesta
mp(string
date, string
pattern)

Converts a datetime string to unix time (seconds since epoch) using the specified pattern. The accepted patterns and their
behavior depend on the underlying formatter implementation. Returns null when the conversion fails. Example:
unix_timestamp('2009-03-20', 'uuuu-MM-dd') = 1237532400

As of Hive 4.0.0 (), the "hive.datetime.formatter" property can be used to control the underlying formatter HIVE-25576
implementation, and as a consequence the accepted patterns and their behavior. Prior versions always used https://docs.

 as the underlying formatter.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

pre 2.1.0:
 string

2.1.0 on:
date

to_date
(string
timestamp)

Returns the date part of a timestamp string (pre-Hive 2.1.0): to_date("1970-01-01 00:00:00") = "1970-01-01". As of Hive
2.1.0, returns a date object.

Prior to Hive 2.1.0 () the return type was a String because no Date type existed when the method was created.HIVE-13248

int year(string
date)

Returns the year part of a date or a timestamp string: year("1970-01-01 00:00:00") = 1970, year("1970-01-01") = 1970.

int quarter(date
/timestamp
/string)

Returns the quarter of the year for a date, timestamp, or string in the range 1 to 4 (as of Hive). Example: quarter 1.3.0
('2015-04-08') = 2.

int month(string
date)

Returns the month part of a date or a timestamp string: month("1970-11-01 00:00:00") = 11, month("1970-11-01") = 11.

int day(string
date)
dayofmonth
(date)

Returns the day part of a date or a timestamp string: day("1970-11-01 00:00:00") = 1, day("1970-11-01") = 1.

int hour(string
date)

Returns the hour of the timestamp: hour('2009-07-30 12:58:59') = 12, hour('12:58:59') = 12.

int minute(string
date)

Returns the minute of the timestamp.

int second
(string date)

Returns the second of the timestamp.

int weekofyear
(string date)

Returns the week number of a timestamp string: weekofyear("1970-11-01 00:00:00") = 44, weekofyear("1970-11-01") = 44.

int extract(field
FROM
source)

Retrieve fields such as days or hours from source (as of Hive). Source must be a date, timestamp, interval or a string 2.2.0
that can be converted into either a date or timestamp. Supported fields include: day, dayofweek, hour, minute, month,
quarter, second, week and year.

Examples:

select extract(month from "2016-10-20") results in 10.
select extract(hour from "2016-10-20 05:06:07") results in 5.
select extract(dayofweek from "2016-10-20 05:06:07") results in 5.
select extract(month from interval '1-3' year to month) results in 3.
select extract(minute from interval '3 12:20:30' day to second) results in 20.

https://issues.apache.org/jira/browse/HIVE-25576
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://issues.apache.org/jira/browse/HIVE-25576
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://issues.apache.org/jira/browse/HIVE-25576
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://issues.apache.org/jira/browse/HIVE-13248
https://issues.apache.org/jira/browse/HIVE-3404
https://issues.apache.org/jira/browse/HIVE-14579

int datediff
(string
enddate,
string
startdate)

Returns the number of days from startdate to enddate: datediff('2009-03-01', '2009-02-27') = 2.

pre 2.1.0:
 string

2.1.0 on:
date

date_add(dat
e/timestamp

startda/string
te, tinyint
/smallint/int
days)

Adds a number of days to startdate: date_add('2008-12-31', 1) = '2009-01-01'.

Prior to Hive 2.1.0 () the return type was a String because no Date type existed when the method was created.HIVE-13248

pre 2.1.0:
 string

2.1.0 on:
date

date_sub(dat
e/timestamp

startda/string
te, tinyint
/smallint/int
days)

Subtracts a number of days to startdate: date_sub('2008-12-31', 1) = '2008-12-30'.

Prior to Hive 2.1.0 () the return type was a String because no Date type existed when the method was created.HIVE-13248

timestamp from_utc_tim
estamp({any

}primitive type
ts, string
timezone)

Converts a timestamp* in UTC to a given timezone (as of Hive 0.8.0).

* timestamp is a primitive type, including timestamp/date, tinyint/smallint/int/bigint, float/double and decimal.

Fractional values are considered as seconds. Integer values are considered as milliseconds. For example, from_utc_timest
amp(2592000.0,'PST'), from_utc_timestamp(2592000000,'PST') and from_utc_timestamp(timestamp '1970-01-30 16:00:
00','PST') all return the timestamp 1970-01-30 08:00:00.

timestamp to_utc_timest
amp({any pri

} tsmitive type
, string
timezone)

Converts a timestamp* in a given timezone to UTC (as of Hive).0.8.0

* timestamp is a primitive type, including timestamp/date, tinyint/smallint/int/bigint, float/double and decimal.

 Integer values are considered as milliseconds. Fractional values are considered as seconds. For example,
to_utc_timestamp(2592000.0,'PST'), to_utc_timestamp(2592000000,'PST') and to_utc_timestamp(timestamp '1970-01-30
16:00:00','PST') all return the timestamp 1970-01-31 00:00:00.

date current_date Returns the current date at the start of query evaluation (as of Hive). All calls of current_date within the same query 1.2.0
return the same value.

timestamp current_times
tamp

Returns the current timestamp at the start of query evaluation . All calls of current_timestamp within the (as of Hive 1.2.0)
same query return the same value.

string add_months
(string
start_date,
int
num_months,
output_date_f

)ormat

Returns the date that is num_months after start_date . start_date is a string, date or timestamp. (as of Hive 1.1.0)
num_months is an integer. If start_date is the last day of the month or if the resulting month has fewer days than the day
component of start_date, then the result is the last day of the resulting month. Otherwise, the result has the same day
component as start_date. The default output format is 'yyyy-MM-dd'.

Before Hive 4.0.0, the time part of the date is ignored.

As of Hive , add_months supports an optional argument output_date_format, which accepts a String that represents a 4.0.0
valid date format for the output. This allows to retain the time format in the output.

For example :

add_months('2009-08-31', 1) returns '2009-09-30'.
add_months('2017-12-31 14:15:16', 2, 'YYYY-MM-dd HH:mm:ss') returns '2018-02-28 14:15:16'.

string last_day
(string date)

Returns the last day of the month which the date belongs to . date is a string in the format 'yyyy-MM-dd (as of Hive 1.1.0)
HH:mm:ss' or 'yyyy-MM-dd'. The time part of date is ignored.

string next_day
(string
start_date,
string
day_of_week)

Returns the first date which is later than start_date and named as day_of_week . start_date is a string(as of Hive 1.2.0)
/date/timestamp. day_of_week is 2 letters, 3 letters or full name of the day of the week (e.g. Mo, tue, FRIDAY). The time
part of start_date is ignored. Example: next_day('2015-01-14', 'TU') = 2015-01-20.

string trunc(string
date, string
format)

Returns date truncated to the unit specified by the format . Supported formats: MONTH/MON/MM, YEAR(as of Hive 1.2.0)
/YYYY/YY. Example: trunc('2015-03-17', 'MM') = 2015-03-01.

double months_betw
een(date1,
date2)

Returns number of months between dates date1 and date2 (as of Hive . If date1 is later than date2, then the result is 1.2.0)
positive. If date1 is earlier than date2, then the result is negative. If date1 and date2 are either the same days of the month
or both last days of months, then the result is always an integer. Otherwise the UDF calculates the fractional portion of the
result based on a 31-day month and considers the difference in time components date1 and date2. date1 and date2 type
can be date, timestamp or string in the format 'yyyy-MM-dd' or 'yyyy-MM-dd HH:mm:ss'. The result is rounded to 8 decimal
places. Example: months_between('1997-02-28 10:30:00', '1996-10-30') = 3.94959677

https://issues.apache.org/jira/browse/HIVE-13248
https://issues.apache.org/jira/browse/HIVE-13248
https://issues.apache.org/jira/browse/HIVE-2272
https://issues.apache.org/jira/browse/HIVE-2272
https://issues.apache.org/jira/browse/HIVE-5472
https://issues.apache.org/jira/browse/HIVE-5472
https://issues.apache.org/jira/browse/HIVE-9357
https://issues.apache.org/jira/browse/HIVE-19370
https://issues.apache.org/jira/browse/HIVE-9358
https://issues.apache.org/jira/browse/HIVE-9520
https://issues.apache.org/jira/browse/HIVE-9480
https://issues.apache.org/jira/browse/HIVE-9518

string date_format
(date
/timestamp
/string ts,
string pattern)

Converts a date/timestamp/string to a value of string using the specified pattern (as of Hive). 1.2.0 The accepted patterns
and their behavior depend on the underlying formatter implementation. The pattern argument should be constant.
Example: date_format('2015-04-08', 'y') = '2015'.

date_format can be used to implement other UDFs, e.g.:

dayname(date) is date_format(date, 'EEEE')
dayofyear(date) is date_format(date, 'D')

As of Hive 4.0.0 (), the "hive.datetime.formatter" property can be - HIVE-27673 Getting issue details... STATUS

used to control the underlying formatter implementation, and as a consequence the accepted patterns and their behavior.
Prior versions always used as the underlying https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
formatter.

Conditional Functions

Return
Type

Name(Signature) Description

T if(boolean testCondition, T valueTrue, T
valueFalseOrNull)

Returns valueTrue when testCondition is true, returns valueFalseOrNull otherwise.

boolean isnull(a) Returns true if a is NULL and false otherwise.

boolean isnotnull (a) Returns true if a is not NULL and false otherwise.

T nvl(T value, T default_value) Returns default value if value is null else returns value (as of HIve).0.11

T COALESCE(T v1, T v2, ...) Returns the first v that is not NULL, or NULL if all v's are NULL.

T CASE a WHEN b THEN c [WHEN d THEN
e]* [ELSE f] END

When a = b, returns c; when a = d, returns e; else returns f.

T CASE WHEN a THEN b [WHEN c THEN d]*
[ELSE e] END

When a = true, returns b; when c = true, returns d; else returns e.

T nullif(a, b) Returns NULL if a=b; otherwise returns a (as of Hive 2.3.0).

Shorthand for: CASE WHEN a = b then NULL else a

void assert_true(boolean condition) Throw an exception if 'condition' is not true, otherwise return null (as of Hive). For 0.8.0
example, select assert_true (2<1).

String Functions

The following built-in String functions are supported in Hive:

Return
Type

Name
(Signature)

Description

int ascii(string str) Returns the numeric value of the first character of str.

string base64(binary bin) Converts the argument from binary to a base 64 string (as of Hive).0.12.0

int character_length
(string str)

Returns the number of UTF-8 characters contained in str (as of Hive). The function char_length is shorthand for 2.2.0
this function.

string chr(bigint|double
A)

Returns the ASCII character having the binary equivalent to A (as of Hive). If A is larger than 256 the 1.3.0 and 2.1.0
result is equivalent to chr(A % 256). Example: select chr(88); returns "X".

string concat
(string|binary A,
string|binary B...)

Returns the string or bytes resulting from concatenating the strings or bytes passed in as parameters in order. For
example, concat('foo', 'bar') results in 'foobar'. Note that this function can take any number of input strings.

array<str
uct<string
,double>>

context_ngrams
(array<array<strin
g>>,
array<string>, int
K, int pf)

Returns the top-k contextual N-grams from a set of tokenized sentences, given a string of "context". See StatisticsAnd
 for more information.DataMining

string concat_ws(string
SEP, string A,
string B...)

Like concat() above, but with custom separator SEP.

https://issues.apache.org/jira/browse/HIVE-10276
https://issues.apache.org/jira/browse/HIVE-27673
https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
https://issues.apache.org/jira/browse/HIVE-2288
https://issues.apache.org/jira/browse/HIVE-13555
https://issues.apache.org/jira/browse/HIVE-2532
https://issues.apache.org/jira/browse/HIVE-2482
https://issues.apache.org/jira/browse/HIVE-15979
https://issues.apache.org/jira/browse/HIVE-13063
https://cwiki.apache.org/confluence/display/Hive/StatisticsAndDataMining
https://cwiki.apache.org/confluence/display/Hive/StatisticsAndDataMining

string concat_ws(string
SEP,
array<string>)

Like concat_ws() above, but taking an array of strings. (as of Hive)0.9.0

string decode(binary
bin, string charset)

Decodes the first argument into a String using the provided character set (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8',
'UTF-16BE', 'UTF-16LE', 'UTF-16'). If either argument is null, the result will also be null. (As of Hive .)0.12.0

string elt(N int,str1 string,
str2 string,str3
string,...)

Return string at index number. For example elt(2,'hello','world') returns 'world'. Returns NULL if N is less than 1 or
greater than the number of arguments.

(see)https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_elt

binary encode(string src,
string charset)

Encodes the first argument into a BINARY using the provided character set (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8',
'UTF-16BE', 'UTF-16LE', 'UTF-16'). If either argument is null, the result will also be null. (As of Hive .)0.12.0

int field(val T,val1 T,
val2 T,val3 T,...)

Returns the index of val in the val1,val2,val3,... list or 0 if not found. For example ('world','say','hello','world') field
returns 3.
All primitive types are supported, arguments are compared using str.equals(x). If val is NULL, the return value is 0.

(see)https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_field

int find_in_set(string
str, string strList)

Returns the first occurance of str in strList where strList is a comma-delimited string. Returns null if either argument is
null. Returns 0 if the first argument contains any commas. For example, find_in_set('ab', 'abc,b,ab,c,def') returns 3.

string format_number
(number x, int d)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the result as a string.
If D is 0, the result has no decimal point or fractional part. (As of Hive ; bug with float types fixed in , 0.10.0 Hive 0.14.0
decimal type support added in)Hive 0.14.0

string get_json_object
(string
json_string, string
path)

Extracts json object from a json string based on json path specified, and returns json string of the extracted json
object. It will return null if the input json string is invalid. NOTE: The json path can only have the characters [0-9a-

* This is due to z_], i.e., no upper-case or special characters. Also, the keys *cannot start with numbers.
restrictions on Hive column names.

boolean in_file(string str,
string filename)

Returns true if the string str appears as an entire line in filename.

int instr(string str,
string substr)

Returns the position of the first occurrence of in . Returns if either of the arguments are and substr str null null
returns if could not be found in . Be aware that this is not zero based. The first character in has 0 substr str str
index 1.

int length(string A) Returns the length of the string.

int locate(string
substr, string str[,
int pos])

Returns the position of the first occurrence of substr in str after position pos.

string lower(string A)
lcase(string A)

Returns the string resulting from converting all characters of B to lower case. For example, lower('fOoBaR') results in
'foobar'.

string lpad(string str, int
len, string pad)

Returns str, left-padded with pad to a length of len. If str is longer than len, the return value is shortened to len
characters. In case of empty pad string, the return value is null.

string ltrim(string A) Returns the string resulting from trimming spaces from the beginning(left hand side) of A. For example, ltrim(' foobar ')
results in 'foobar '.

array<str
uct<string
,double>>

ngrams
(array<array<strin
g>>, int N, int K,
int pf)

Returns the top-k N-grams from a set of tokenized sentences, such as those returned by the sentences() UDAF. See S
 for more information.tatisticsAndDataMining

int octet_length
(string str)

Returns the number of octets required to hold the string str in UTF-8 encoding (since Hive). Note that 2.2.0
octet_length(str) can be larger than character_length(str).

string parse_url(string
urlString, string
partToExtract [,
string
keyToExtract])

Returns the specified part from the URL. Valid values for partToExtract include HOST, PATH, QUERY, REF,
PROTOCOL, AUTHORITY, FILE, and USERINFO. For example, parse_url('http://facebook.com/path1/p.php?
k1=v1&k2=v2#Ref1', 'HOST') returns 'facebook.com'. Also a value of a particular key in QUERY can be extracted by
providing the key as the third argument, for example, parse_url('http://facebook.com/path1/p.php?
k1=v1&k2=v2#Ref1', 'QUERY', 'k1') returns 'v1'.

string printf(String
format, Obj... args)

Returns the input formatted according do printf-style format strings (as of Hive).0.9.0

https://issues.apache.org/jira/browse/HIVE-2203
https://issues.apache.org/jira/browse/HIVE-2482
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_elt
https://issues.apache.org/jira/browse/HIVE-2482
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_field
https://issues.apache.org/jira/browse/HIVE-2694
https://issues.apache.org/jira/browse/HIVE-7257
https://issues.apache.org/jira/browse/HIVE-7279
https://cwiki.apache.org/confluence/display/Hive/StatisticsAndDataMining
https://cwiki.apache.org/confluence/display/Hive/StatisticsAndDataMining
https://issues.apache.org/jira/browse/HIVE-15979
https://issues.apache.org/jira/browse/HIVE-2695

string quote(String text) Returns the quoted string (Includes escape character for any single quotes)HIVE-4.0.0

Input Output

NULL NULL

DONT 'DONT'

DON'T 'DON\'T'

string regexp_extract
(string subject,
string pattern, int
index)

Returns the string extracted using the pattern. For example, regexp_extract('foothebar', 'foo(.*?)(bar)', 2) returns 'bar.'
Note that some care is necessary in using predefined character classes: using '\s' as the second argument will match
the letter s; '\\s' is necessary to match whitespace, etc. The 'index' parameter is the Java regex Matcher group()
method index. See for more information on the 'index' or Java regex group() docs/api/java/util/regex/Matcher.html
method.

string regexp_replace
(string
INITIAL_STRING,
string PATTERN,
string
REPLACEMENT)

Returns the string resulting from replacing all substrings in INITIAL_STRING that match the java regular expression
syntax defined in PATTERN with instances of REPLACEMENT. For example, regexp_replace("foobar", "oo|ar", "")
returns 'fb.' Note that some care is necessary in using predefined character classes: using '\s' as the second argument
will match the letter s; '\\s' is necessary to match whitespace, etc.

string repeat(string str,
int n)

Repeats str n times.

string replace(string A,
string OLD, string
NEW)

Returns the string A with all non-overlapping occurrences of OLD replaced with NEW (as of). Hive 1.3.0 and 2.1.0
Example: select replace("ababab", "abab", "Z"); returns "Zab".

string reverse(string A) Returns the reversed string.

string rpad(string str, int
len, string pad)

Returns str, right-padded with pad to a length of len. If str is longer than len, the return value is shortened to len
characters. In case of empty pad string, the return value is null.

string rtrim(string A) Returns the string resulting from trimming spaces from the end(right hand side) of A. For example, rtrim(' foobar ')
results in ' foobar'.

array<arr
ay<string
>>

sentences(string
str, string lang,
string locale)

Tokenizes a string of natural language text into words and sentences, where each sentence is broken at the
appropriate sentence boundary and returned as an array of words. The 'lang' and 'locale' are optional arguments. For
example, sentences('Hello there! How are you?') returns (("Hello", "there"), ("How", "are", "you")).

string space(int n) Returns a string of n spaces.

array split(string str,
string pat)

Splits str around pat (pat is a regular expression).

map<strin
g,string>

str_to_map(text[,
delimiter1,
delimiter2])

Splits text into key-value pairs using two delimiters. Delimiter1 separates text into K-V pairs, and Delimiter2 splits each
K-V pair. Default delimiters are ',' for delimiter1 and ':' for delimiter2.

string substr
(string|binary A,
int start) substring
(string|binary A,
int start)

Returns the substring or slice of the byte array of A starting from start position till the end of string A. For example,
substr('foobar', 4) results in 'bar' (see []).http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_substr

string substr
(string|binary A,
int start, int len)
substring
(string|binary A,
int start, int len)

Returns the substring or slice of the byte array of A starting from start position with length len. For example, substr
('foobar', 4, 1) results in 'b' (see []).http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_substr

string substring_index
(string A, string
delim, int count)

Returns the substring from string A before count occurrences of the delimiter delim (as of). If count is Hive 1.3.0
positive, everything to the left of the final delimiter (counting from the left) is returned. If count is negative, everything
to the right of the final delimiter (counting from the right) is returned. Substring_index performs a case-sensitive match
when searching for delim. Example: substring_index('www.apache.org', '.', 2) = 'www.apache'.

string translate
(string|char|varcha
r input,
string|char|varchar
from,
string|char|varchar
to)

Translates the input string by replacing the characters present in the string with the corresponding characters in from
the string. This is similar to the function in . If any of the parameters to this UDF are to translate PostgreSQL
NULL, the result is NULL as well. (Available as of Hive , for string types)0.10.0

Char/varchar support added as of .Hive 0.14.0

string trim(string A) Returns the string resulting from trimming spaces from both ends of A. For example, trim(' foobar ') results in 'foobar'

https://issues.apache.org/jira/browse/HIVE-21134
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html
https://issues.apache.org/jira/browse/HIVE-13063
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_substr
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_substr
https://issues.apache.org/jira/browse/HIVE-686
http://www.postgresql.org/docs/9.1/interactive/functions-string.html
https://issues.apache.org/jira/browse/HIVE-2418
https://issues.apache.org/jira/browse/HIVE-6622

binary unbase64(string
str)

Converts the argument from a base 64 string to BINARY. (As of Hive .)0.12.0

string upper(string A)
ucase(string A)

Returns the string resulting from converting all characters of A to upper case. For example, upper('fOoBaR') results in
'FOOBAR'.

string initcap(string A) Returns string, with the first letter of each word in uppercase, all other letters in lowercase. Words are delimited by
whitespace. .(As of Hive 1.1.0)

int levenshtein(string
A, string B)

Returns the Levenshtein distance between two strings . For example, levenshtein('kitten', 'sitting') (as of Hive 1.2.0)
results in 3.

string soundex(string A) Returns soundex code of the string . For example, soundex('Miller') results in M460.(as of Hive 1.2.0)

Data Masking Functions

The following built-in data masking functions are supported in Hive:

Return
Type

Name
(Signature)

Description

string mask(string
str[, string
upper[, string
lower[, string
number]]])

Returns a masked version of str (as of Hive). By default, upper case letters are converted to "X", lower case letters 2.1.0
are converted to "x" and numbers are converted to "n". For example mask("abcd-EFGH-8765-4321") results in xxxx-XXXX-
nnnn-nnnn. You can override the characters used in the mask by supplying additional arguments: the second argument
controls the mask character for upper case letters, the third argument for lower case letters and the fourth argument for
numbers. For example, mask("abcd-EFGH-8765-4321", "U", "l", "#") results in llll-UUUU-####-####.

string mask_first_n
(string str[,
int n])

Returns a masked version of str with the first n values masked (as of Hive). Upper case letters are converted to "X", 2.1.0
lower case letters are converted to "x" and numbers are converted to "n". For example, mask_first_n("1234-5678-8765-
4321", 4) results in nnnn-5678-8765-4321.

string mask_last_n
(string str[,
int n])

Returns a masked version of str with the last n values masked (as of Hive). Upper case letters are converted to "X", 2.1.0
lower case letters are converted to "x" and numbers are converted to "n". For example, mask_last_n("1234-5678-8765-
4321", 4) results in 1234-5678-8765-nnnn.

string mask_show_f
irst_n(string
str[, int n])

Returns a masked version of str, showing the first n characters unmasked (as of Hive). Upper case letters are 2.1.0
converted to "X", lower case letters are converted to "x" and numbers are converted to "n". For example,
mask_show_first_n("1234-5678-8765-4321", 4) results in 1234-nnnn-nnnn-nnnn.

string mask_show_l
ast_n(string
str[, int n])

Returns a masked version of str, showing the last n characters unmasked (as of Hive). Upper case letters are 2.1.0
converted to "X", lower case letters are converted to "x" and numbers are converted to "n". For example,
mask_show_last_n("1234-5678-8765-4321", 4) results in nnnn-nnnn-nnnn-4321.

string mask_hash
(string|char|v
archar str)

Returns a hashed value based on str (as of Hive). The hash is consistent and can be used to join masked values 2.1.0
together across tables. This function returns null for non-string types.

Misc. Functions

Return
Type

Name
(Signature)

Description

varies java_method
(class,
method[, arg1
[, arg2..]])

Synonym for . (As of Hive .)reflect 0.9.0

varies reflect(class,
method[, arg1
[, arg2..]])

Calls a Java method by matching the argument signature, using reflection. (As of Hive .) See 0.7.0 Reflect (Generic) UDF
for examples.

int hash(a1[,
a2...])

Returns a hash value of the arguments. (As of Hive 0.4.)

string current_user() Returns current user name from the configured authenticator manager . Could be the same as the user (as of Hive 1.2.0)
provided when connecting, but with some authentication managers (for example HadoopDefaultAuthenticator) it could be
different.

string logged_in_us
er()

Returns current user name from the session state (as of Hive 2.2.0). This is the username provided when connecting to
Hive.

string current_datab
ase()

Returns current database name (as of Hive).0.13.0

https://issues.apache.org/jira/browse/HIVE-2482
https://issues.apache.org/jira/browse/HIVE-3405
https://issues.apache.org/jira/browse/HIVE-9556
https://issues.apache.org/jira/browse/HIVE-9738
https://issues.apache.org/jira/browse/HIVE-13568
https://issues.apache.org/jira/browse/HIVE-13568
https://issues.apache.org/jira/browse/HIVE-13568
https://issues.apache.org/jira/browse/HIVE-13568
https://issues.apache.org/jira/browse/HIVE-13568
https://issues.apache.org/jira/browse/HIVE-13568
https://issues.apache.org/jira/browse/HIVE-1877
https://issues.apache.org/jira/browse/HIVE-471
https://cwiki.apache.org/confluence/display/Hive/ReflectUDF
https://issues.apache.org/jira/browse/HIVE-9143
https://issues.apache.org/jira/browse/HIVE-14100
https://issues.apache.org/jira/browse/HIVE-4144

string md5(string
/binary)

Calculates an MD5 128-bit checksum for the string or binary (). The value is returned as a string of 32 hex as of Hive 1.3.0
digits, or NULL if the argument was NULL. Example: md5('ABC') = '902fbdd2b1df0c4f70b4a5d23525e932'.

string sha1(string
/binary)

sha(string
/binary)

Calculates the SHA-1 digest for string or binary and returns the value as a hex string (). Example: sha1as of Hive 1.3.0
('ABC') = '3c01bdbb26f358bab27f267924aa2c9a03fcfdb8'.

bigint crc32(string
/binary)

Computes a cyclic redundancy check value for string or binary argument and returns bigint value (). as of Hive 1.3.0
Example: crc32('ABC') = 2743272264.

string sha2(string
/binary, int)

Calculates the SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512) (as of Hive). The first 1.3.0
argument is the string or binary to be hashed. The second argument indicates the desired bit length of the result, which
must have a value of 224, 256, 384, 512, or 0 (which is equivalent to 256). SHA-224 is supported starting from Java 8. If
either argument is NULL or the hash length is not one of the permitted values, the return value is NULL. Example: sha2
('ABC', 256) = 'b5d4045c3f466fa91fe2cc6abe79232a1a57cdf104f7a26e716e0a1e2789df78'.

binary aes_encrypt
(input string
/binary, key
string/binary)

Encrypt input using AES (as of Hive). Key lengths of 128, 192 or 256 bits can be used. 192 and 256 bits keys can be 1.3.0
used if Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files are installed. If either argument is
NULL or the key length is not one of the permitted values, the return value is NULL. Example: base64(aes_encrypt('ABC',
'1234567890123456')) = 'y6Ss+zCYObpCbgfWfyNWTw=='.

binary aes_decrypt
(input binary,
key string
/binary)

Decrypt input using AES (as of Hive). Key lengths of 128, 192 or 256 bits can be used. 192 and 256 bits keys can be 1.3.0
used if Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files are installed. If either argument is
NULL or the key length is not one of the permitted values, the return value is NULL. Example: aes_decrypt(unbase64
('y6Ss+zCYObpCbgfWfyNWTw=='), '1234567890123456') = 'ABC'.

string version() Returns the Hive version (as of Hive). The string contains 2 fields, the first being a build number and the second 2.1.0
being a build hash. Example: "select version();" might return "2.1.0.2.5.0.0-1245
r027527b9c5ce1a3d7d0b6d2e6de2378fb0c39232". Actual results will depend on your build.

bigint surrogate_ke
y
([write_id_bits
,
task_id_bits])

Automatically generate numerical Ids for rows as you enter data into a table. Can only be used as default value for acid or
insert-only tables.

xpath

The following functions are described in :LanguageManual XPathUDF

xpath, xpath_short, xpath_int, xpath_long, xpath_float, xpath_double, xpath_number, xpath_string

get_json_object

A limited version of JSONPath is supported:

$: Root object
. : Child operator
[] : Subscript operator for array
* : Wildcard for []

Syntax not supported that's worth noticing:

: Zero length string as key
.. : Recursive descent
@ : Current object/element
() : Script expression
?() : Filter (script) expression.
[,] : Union operator
[start:end.step] : array slice operator

Example: src_json table is a single column (json), single row table:

https://issues.apache.org/jira/browse/HIVE-10485
https://issues.apache.org/jira/browse/HIVE-10639
https://issues.apache.org/jira/browse/HIVE-10641
https://issues.apache.org/jira/browse/HIVE-10644
https://issues.apache.org/jira/browse/HIVE-11593
https://issues.apache.org/jira/browse/HIVE-11593
https://issues.apache.org/jira/browse/HIVE-12983
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+XPathUDF

+----+
 json
+----+
{"store":
 {"fruit":\[{"weight":8,"type":"apple"},{"weight":9,"type":"pear"}],
 "bicycle":{"price":19.95,"color":"red"}
 },
 "email":"amy@only_for_json_udf_test.net",
 "owner":"amy"
}
+----+

The fields of the json object can be extracted using these queries:

hive> SELECT get_json_object(src_json.json, '$.owner') FROM src_json;
amy

hive> SELECT get_json_object(src_json.json, '$.store.fruit\[0]') FROM src_json;
{"weight":8,"type":"apple"}

hive> SELECT get_json_object(src_json.json, '$.non_exist_key') FROM src_json;
NULL

Built-in Aggregate Functions (UDAF)

The following built-in aggregate functions are supported in Hive:

Return
Type

Name
(Signature)

Description

BIGINT count(*), count
(expr), count
(DISTINCT expr
[, expr...])

count(*) - Returns the total number of retrieved rows, including rows containing NULL values.

count(expr) - Returns the number of rows for which the supplied expression is non-NULL.

count(DISTINCT expr[, expr]) - Returns the number of rows for which the supplied expression(s) are unique and non-
NULL. Execution of this can be optimized with .hive.optimize.distinct.rewrite

DOUBLE sum(col), sum
(DISTINCT col)

Returns the sum of the elements in the group or the sum of the distinct values of the column in the group.

DOUBLE avg(col), avg
(DISTINCT col)

Returns the average of the elements in the group or the average of the distinct values of the column in the group.

DOUBLE min(col) Returns the minimum of the column in the group.

DOUBLE max(col) Returns the maximum value of the column in the group.

DOUBLE variance(col),
var_pop(col)

Returns the variance of a numeric column in the group.

DOUBLE var_samp(col) Returns the unbiased sample variance of a numeric column in the group.

DOUBLE stddev_pop(col) Returns the standard deviation of a numeric column in the group.

DOUBLE stddev_samp
(col)

Returns the unbiased sample standard deviation of a numeric column in the group.

DOUBLE covar_pop(col1,
col2)

Returns the population covariance of a pair of numeric columns in the group.

DOUBLE covar_samp
(col1, col2)

Returns the sample covariance of a pair of a numeric columns in the group.

DOUBLE corr(col1, col2) Returns the Pearson coefficient of correlation of a pair of a numeric columns in the group.

DOUBLE percentile
(BIGINT col, p)

Returns the exact p percentile of a column in the group (does not work with floating point types). p must be between 0 th

and 1. NOTE: A true percentile can only be computed for integer values. Use PERCENTILE_APPROX if your input is
non-integral.

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.optimize.distinct.rewrite

array<do
uble>

percentile
(BIGINT col,
array(p [, p]...))1 2

Returns the exact percentiles p , p , ... of a column in the group (does not work with floating point types). p must be 1 2 i
between 0 and 1. NOTE: A true percentile can only be computed for integer values. Use PERCENTILE_APPROX if
your input is non-integral.

DOUBLE percentile_appro
x(DOUBLE col,
p [, B])

Returns an approximate p percentile of a numeric column (including floating point types) in the group. The B th

parameter controls approximation accuracy at the cost of memory. Higher values yield better approximations, and the
default is 10,000. When the number of distinct values in col is smaller than B, this gives an exact percentile value.

array<do
uble>

percentile_appro
x(DOUBLE col,
array(p [, p]...) 1 2
[, B])

Same as above, but accepts and returns an array of percentile values instead of a single one.

double regr_avgx
(independent,
dependent)

Equivalent to avg(dependent). As of .Hive 2.2.0

double regr_avgy
(independent,
dependent)

Equivalent to avg(independent). As of .Hive 2.2.0

double regr_count
(independent,
dependent)

Returns the number of non-null pairs used to fit the linear regression line. As of .Hive 2.2.0

double regr_intercept
(independent,
dependent)

Returns the y-intercept of the , i.e. the value of b in the equation dependent = a * independent + b. linear regression line
As of .Hive 2.2.0

double regr_r2
(independent,
dependent)

Returns the for the regression. As of .coefficient of determination Hive 2.2.0

double regr_slope
(independent,
dependent)

Returns the slope of the , i.e. the value of a in the equation dependent = a * independent + b. As linear regression line
of .Hive 2.2.0

double regr_sxx
(independent,
dependent)

Equivalent to regr_count(independent, dependent) * var_pop(dependent). As of .Hive 2.2.0

double regr_sxy
(independent,
dependent)

Equivalent to regr_count(independent, dependent) * covar_pop(independent, dependent). As of .Hive 2.2.0

double regr_syy
(independent,
dependent)

Equivalent to regr_count(independent, dependent) * var_pop(independent). As of .Hive 2.2.0

array<str
uct {'x',

}>'y'

histogram_numer
ic(col, b)

Computes a histogram of a numeric column in the group using b non-uniformly spaced bins. The output is an array of
size b of double-valued (x,y) coordinates that represent the bin centers and heights

array collect_set(col) Returns a set of objects with duplicate elements eliminated.

array collect_list(col) Returns a list of objects with duplicates. (As of Hive .)0.13.0

INTEGER ntile(INTEGER x) Divides an ordered partition into x groups called buckets and assigns a bucket number to each row in the partition. This
allows easy calculation of tertiles, quartiles, deciles, percentiles and other common summary statistics. (As of Hive 0.11.0
.)

Built-in Table-Generating Functions (UDTF)

Normal user-defined functions, such as concat(), take in a single input row and output a single output row. In contrast, table-generating functions transform
a single input row to multiple output rows.

Row-set
columns
types

Name
(Signature)

Description

T explode
(ARRAY<T> a)

Explodes an array to multiple rows. Returns a row-set with a single column (), one row for each element from the col
array.

T ,Tkey value explode(MAP<Tkey
,T > m)value

Explodes a map to multiple rows. Returns one row for each key-value a row-set with a two columns (, key,value)
pair from the input map. (As of Hive .).0.8.0

https://issues.apache.org/jira/browse/HIVE-15978
https://issues.apache.org/jira/browse/HIVE-15978
https://issues.apache.org/jira/browse/HIVE-15978
https://en.wikipedia.org/wiki/Linear_regression
https://issues.apache.org/jira/browse/HIVE-15978
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://issues.apache.org/jira/browse/HIVE-15978
https://en.wikipedia.org/wiki/Linear_regression
https://issues.apache.org/jira/browse/HIVE-15978
https://issues.apache.org/jira/browse/HIVE-15978
https://issues.apache.org/jira/browse/HIVE-15978
https://issues.apache.org/jira/browse/HIVE-15978
https://issues.apache.org/jira/browse/HIVE-5294
https://issues.apache.org/jira/browse/HIVE-896
https://issues.apache.org/jira/browse/HIVE-896
https://issues.apache.org/jira/browse/HIVE-1735

int,T posexplode(ARRA
Y<T> a)

Explodes an array to multiple rows with additional positional column of type (position of items in the original int
array, starting with 0). Returns a row-set with two columns (), one row for each element from the array.pos,val

T ,...,T1 n inline
(ARRAY<STRUC
T<f :T ,...,f :T >> 1 1 n n
a)

Returns Explodes an array of structs to multiple rows. a row-set with N columns (N = number of top level elements
in the struct), one row per struct from the array. (As of Hive .)0.10

T ,...,T1 n/r stack(int r,T ,...1 V1
,T V)n/r n

Breaks up values V ,...,V into rows. Each row will have columns. must be constant.n 1 n r n/r r

string1,...,st

ringn

json_tuple(jsstring
onStr, k ,...,string 1 s

k)tring n

Takes a set of keys, and returns a tuple of values. This is a more efficient version of the JSON string and n n get_j
 UDF because it can get multiple keys with just one call.son_object

string 1,...,

stringn

parse_url_tuple(str
urlStr, p ,ing string 1

..., p)string n

Takes URL string and a set of n URL parts, and returns a tuple of n values. This is similar to the parse_url()
UDF but can extract multiple parts at once out of a URL. Valid part names are: HOST, PATH, QUERY, REF,
PROTOCOL, AUTHORITY, FILE, USERINFO, QUERY:<KEY>.

Usage Examples

explode (array)

select explode(array('A','B','C'));
select explode(array('A','B','C')) as col;
select tf.* from (select 0) t lateral view explode(array('A','B','C')) tf;
select tf.* from (select 0) t lateral view explode(array('A','B','C')) tf as col;

explode (map)

select explode(map('A',10,'B',20,'C',30));
select explode(map('A',10,'B',20,'C',30)) as (key,value);
select tf.* from (select 0) t lateral view explode(map('A',10,'B',20,'C',30)) tf;
select tf.* from (select 0) t lateral view explode(map('A',10,'B',20,'C',30)) tf as key,value;

posexplode (array)

https://issues.apache.org/jira/browse/HIVE-3238

select posexplode(array('A','B','C'));
select posexplode(array('A','B','C')) as (pos,val);
select tf.* from (select 0) t lateral view posexplode(array('A','B','C')) tf;
select tf.* from (select 0) t lateral view posexplode(array('A','B','C')) tf as pos,val;

inline (array of structs)

select inline(array(struct('A',10,date '2015-01-01'),struct('B',20,date '2016-02-02')));
select inline(array(struct('A',10,date '2015-01-01'),struct('B',20,date '2016-02-02'))) as (col1,col2,col3);
select tf.* from (select 0) t lateral view inline(array(struct('A',10,date '2015-01-01'),struct('B',20,date
'2016-02-02'))) tf;
select tf.* from (select 0) t lateral view inline(array(struct('A',10,date '2015-01-01'),struct('B',20,date
'2016-02-02'))) tf as col1,col2,col3;

stack (values)

select stack(2,'A',10,date '2015-01-01','B',20,date '2016-01-01');
select stack(2,'A',10,date '2015-01-01','B',20,date '2016-01-01') as (col0,col1,col2);
select tf.* from (select 0) t lateral view stack(2,'A',10,date '2015-01-01','B',20,date '2016-01-01') tf;
select tf.* from (select 0) t lateral view stack(2,'A',10,date '2015-01-01','B',20,date '2016-01-01') tf as
col0,col1,col2;

Using the syntax "SELECT udtf(col) AS colAlias..." has a few limitations:

No other expressions are allowed in SELECT
SELECT pageid, explode(adid_list) AS myCol... is not supported

UDTF's can't be nested
SELECT explode(explode(adid_list)) AS myCol... is not supported

GROUP BY / CLUSTER BY / DISTRIBUTE BY / SORT BY is not supported
SELECT explode(adid_list) AS myCol ... GROUP BY myCol is not supported

Please see for an alternative syntax that does not have these limitations.LanguageManual LateralView

Also see if you want to create a custom UDTF.Writing UDTFs

explode

explode() takes in an array (or a map) as an input and outputs the elements of the array (map) as separate rows. UDTFs can be used in the SELECT
expression list and as a part of LATERAL VIEW.

As an example of using in the SELECT expression list, cexplode() onsider a table named myTable that has a single column (myCol) and two rows:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+LateralView
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide+UDTF

Array<int> myCol

[100,200,300]

[400,500,600]

Then running the query:

SELECT explode(myCol) AS myNewCol FROM myTable;

will produce:

(int) myNewCol

100

200

300

400

500

600

The usage with Maps is similar:

SELECT explode(myMap) AS (myMapKey, myMapValue) FROM myMapTable;

posexplode

posexplode() is similar to but instead of just returning the elements of the array it returns the element as well as its position in the original explode
array.

As an example of using in the SELECT expression list, cposexplode() onsider a table named myTable that has a single column (myCol) and two rows:

Array<int> myCol

[100,200,300]

[400,500,600]

Then running the query:

SELECT posexplode(myCol) AS pos, myNewCol FROM myTable;

will produce:

(int) pos (int) myNewCol

1 100

2 200

3 300

1 400

2 500

3 600

Version

Available as of Hive 0.13.0. See .HIVE-4943

https://issues.apache.org/jira/browse/HIVE-4943

json_tuple

A new json_tuple() UDTF is introduced in Hive 0.7. It takes a set of names (keys) and a JSON string, and returns a tuple of values using one function. This
is much more efficient than calling GET_JSON_OBJECT to retrieve more than one key from a single JSON string. In any case where a single JSON string
would be parsed more than once, your query will be more efficient if you parse it once, which is what JSON_TUPLE is for. As JSON_TUPLE is a UDTF,
you will need to use the syntax in order to achieve the same goal.LATERAL VIEW

For example,

select a.timestamp, get_json_object(a.appevents, '$.eventid'), get_json_object(a.appenvets, '$.eventname') from
log a;

should be changed to:

select a.timestamp, b.*
from log a lateral view json_tuple(a.appevent, 'eventid', 'eventname') b as f1, f2;

parse_url_tuple

The parse_url_tuple() UDTF is similar to parse_url(), but can extract multiple parts of a given URL, returning the data in a tuple. Values for a particular key
in QUERY can be extracted by appending a colon and the key to the partToExtract argument, for example, parse_url_tuple('http://facebook.com/path1/p.
php?k1=v1&k2=v2#Ref1', 'QUERY:k1', 'QUERY:k2') returns a tuple with values of 'v1','v2'. This is more efficient than calling parse_url() multiple times. All
the input parameters and output column types are string.

SELECT b.*
FROM src LATERAL VIEW parse_url_tuple(fullurl, 'HOST', 'PATH', 'QUERY', 'QUERY:id') b as host, path, query,
query_id LIMIT 1;

GROUPing and SORTing on f(column)

A typical OLAP pattern is that you have a timestamp column and you want to group by daily or other less granular date windows than by second. So you
might want to select concat(year(dt),month(dt)) and then group on that concat(). But if you attempt to GROUP BY or SORT BY a column on which you've
applied a function and alias, like this:

select f(col) as fc, count(*) from table_name group by fc;

you will get an error:

FAILED: Error in semantic analysis: line 1:69 Invalid Table Alias or Column Reference fc

because you are not able to GROUP BY or SORT BY a column alias on which a function has been applied. There are two workarounds. First, you can
reformulate this query with subqueries, which is somewhat complicated:

select sq.fc,col1,col2,...,colN,count(*) from
 (select f(col) as fc,col1,col2,...,colN from table_name) sq
 group by sq.fc,col1,col2,...,colN;

Or you can make sure not to use a column alias, which is simpler:

select f(col) as fc, count(*) from table_name group by f(col);

Contact Tim Ellis (tellis) at RiotGames dot com if you would like to discuss this in further detail.

Utility Functions

Function Name Return Type Description To Run

version String Provides the Hive version Details (Package built version) select version();

buildversion String Extension of the Version function which includes the checksum select buildversion();

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+LateralView

UDF internals

The context of a UDF's evaluate method is one row at a time. A simple invocation of a UDF like

SELECT length(string_col) FROM table_name;

would evaluate the length of each of the string_col's values in the map portion of the job. The side effect of the UDF being evaluated on the map-side is
that you can't control the order of rows which get sent to the mapper. It is the same order in which the file split sent to the mapper gets deserialized. Any
reduce side operation (such as SORT BY, ORDER BY, regular JOIN, etc.) would apply to the UDFs output as if it is just another column of the table. This
is fine since the context of the UDF's evaluate method is meant to be one row at a time.

If you would like to control which rows get sent to the same UDF (and possibly in what order), you will have the urge to make the UDF evaluate during the
reduce phase. This is achievable by making use of . An example query would be:DISTRIBUTE BY, DISTRIBUTE BY + SORT BY, CLUSTER BY

SELECT reducer_udf(my_col, distribute_col, sort_col) FROM
(SELECT my_col, distribute_col, sort_col FROM table_name DISTRIBUTE BY distribute_col SORT BY distribute_col,
sort_col) t

However, one could argue that the very premise of your requirement to control the set of rows sent to the same UDF is to do aggregation in that UDF. In
such a case, using a User Defined Aggregate Function (UDAF) is a better choice. You can read more about writing a UDAF . Alternatively, you can here
user a custom reduce script to accomplish the same using . Both of these options would do aggregations on the reduce side.Hive's Transform functionality

Creating Custom UDFs

For information about how to create a custom UDF, see and .Hive Plugins Create Function

select explode(array('A','B','C'));select explode(array('A','B','C')) as col;select tf.* from (select 0) t lateral view explode(array('A','B','C')) tf;select tf.* from
(select 0) t lateral view explode(array('A','B','C')) tf as col;

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SortBy
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Transform
https://cwiki.apache.org/confluence/display/Hive/HivePlugins
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateFunction

	LanguageManual UDF

