
HTTP

HTTP Component

The component provides HTTP based for consuming external HTTP resources (as a client to call external servers using HTTP).http: endpoints

Maven users will need to add the following dependency to their for this component:pom.xml

xml<dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-http</artifactId> <version>x.x.x</version> <!-- use the same version as your
Camel core version --> </dependency>

URI Format
http:hostname[:port][/resourceUri][?param1=value1][¶m2=value2]

Will by default use port for HTTP and for HTTPS.80 443

camel-http vs camel-jetty
You can only produce to endpoints generated by the HTTP component. Therefore it should never be used as input into your camel Routes. To bind/expose
an HTTP endpoint via a HTTP server as input to a camel route, you can use the or the Jetty Component Servlet Component

Examples

Call the URL with the body using and return response as the message. If body is call URL using and return response as POST OUT null GET OUT
message:

Java DSL Spring DSL

from("direct:start") .to("http://myhost/mypath"); xml<from uri="direct:start"/> <to uri="http://oldhost"/>

You can override the HTTP endpoint URI by adding a header. Camel will call the . This is very handy for e.g. REST URLs:http://newhost

Java DSL

javafrom("direct:start") .setHeader(Exchange.HTTP_URI, simple("http://myserver/orders/${header.orderId}")) .to("http://dummyhost");

URI parameters can either be set directly on the endpoint URI or as a header:

Java DSL

javafrom("direct:start") .to("http://oldhost?order=123&detail=short"); from("direct:start") .setHeader(Exchange.HTTP_QUERY, constant
("order=123&detail=short")) .to("http://oldhost");

Set the HTTP request method to :POST

Java DSL Spring DSL

from("direct:start") .setHeader(Exchange.
HTTP_METHOD, constant("POST")) .to("http://www.
google.com");

xml<from uri="direct:start"/> <setHeader headerName="CamelHttpMethod">
<constant>POST</constant> </setHeader> <to uri="http://www.google.com"/> <to uri="mock:
results"/>

HttpEndpoint Options
confluenceTableSmall

Name Default
Value

Description

throwExcep
tionOnFail
ure

true Option to disable throwing the in case of failed responses from the remote server. HttpOperationFailedException
This allows you to get all responses regardless of the HTTP status code.

bridgeEndp
oint

false If the option is , will ignore the header, and use the endpoint's URI for true HttpProducer Exchange.HTTP_URI
request. You may also set to ensure all responses are propagated back to the throwExceptionOnFailure=false Ht

.tpProducer

From when the and will skip processing when Camel 2.3: true HttpProducer CamelServlet gzip content-
.encoding=gzip

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint
https://cwiki.apache.org/confluence/display/CAMEL/Jetty
https://cwiki.apache.org/confluence/display/CAMEL/SERVLET
http://newhost

disableStr
eamCache

false When the will copy the request input stream into a stream cache and put it into message false DefaultHttpBinding
body which allows it to be read more than once.

When the will set the request input stream direct into the message body.true DefaultHttpBinding

From this options is now also support by the producer to allow using the response stream directly instead of Camel 2.17:
stream caching as by default.

httpBindin
gRef

null Reference to a in Deprecated and removed in Camel 2.17: org.apache.camel.component.http.HttpBinding
the . Use the option instead.Registry httpBinding

httpBinding null From reference to a in the . Camel 2.3: org.apache.camel.component.http.HttpBinding Registry

httpClient
Configurer
Ref

null Reference to a Deprecated and removed in Camel 2.17: org.apache.camel.component.http.
 in the . Use the option instead.HttpClientConfigurer Registry httpClientConfigurer

httpClient
Configurer

null From reference to a in the .Camel 2.3: org.apache.camel.component.http.HttpClientConfigurer Registry

httpClient
.XXX

null Use this to option to configure the underlying .HttpClientParams

Example: will set the to 5 seconds.httpClient.soTimeout=5000 SO_TIMEOUT

clientConn
ectionMana
ger

null To use a custom .org.apache.http.conn.ClientConnectionManager

transferEx
ception

false From If enabled and an failed processing on the consumer side, and if the caused was Camel 2.6: Exchange Exception
send back serialized in the response as a content type (for example application/x-java-serialized-object
using or Camel components).Jetty SERVLET

On the producer side the exception will be deserialized and thrown as is, instead of the HttpOperationFailedExcepti
. The caused exception will be serialized.on

headerFilt
erStrategy

null From reference to a instance of in the . It will Camel 2.11: org.apache.camel.spi.HeaderFilterStrategy Registry
be used to apply the custom on the new create .headerFilterStrategy HttpEndpoint

urlRewrite null From Camel 2.11: Producer only!

Refers to a custom which allows you to rewrite URLs when you org.apache.camel.component.http.UrlRewrite
bridge/proxy endpoints.

See more details at and .UrlRewrite How to use Camel as a HTTP proxy between a client and server

eagerCheck
ContentAva
ilable

false From Camel 2.15.3/2.16: !Consumer only

Whether to eager check whether the HTTP requests has content when or is not present.content-length=0

This option should be set to for those HTTP clients that do not send streamed data.true

copyHeaders true From if this option is true then exchange headers will be copied to exchange headers according to Camel 2.16: IN OUT
copy strategy.

Setting this to , allows to only include the headers from the HTTP response (not propagating headers).false IN

okStatusCo
deRange

200-299 From the range of HTTP status codes for which a response is considered a success. The values are Camel 2.16:
inclusive. The range must be in the form , dash included.from-to

ignoreResp
onseBody

false From when the will not read the response body nor cache the input stream. Camel 2.16: true HttpProducer

cookieHand
ler

null From configure a cookie handler to maintain a HTTP session Camel: 2.19:

Authentication and Proxy

The following authentication options can also be set on the :HttpEndpoint

confluenceTableSmall

Name Default Value Description

authMethod null Authentication method, either as , or .Basic Digest NTLM

https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/Registry
http://hc.apache.org/httpclient-3.x/apidocs/org/apache/commons/httpclient/params/HttpClientParams.html
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Jetty
https://cwiki.apache.org/confluence/display/CAMEL/SERVLET
https://cwiki.apache.org/confluence/display/CAMEL/Registry
https://cwiki.apache.org/confluence/display/CAMEL/UrlRewrite
https://cwiki.apache.org/confluence/display/CAMEL/How+to+use+Camel+as+a+HTTP+proxy+between+a+client+and+server

authMethodPriority null Priority of authentication methods. Is a list separated with comma.

For example: to exclude .,Basic Digest NTLM

authUsername null Username for authentication.

authPassword null Password for authentication.

authDomain null Domain for authentication.NTLM

authHost null Optional host for authentication.NTLM

proxyHost null The proxy host name.

proxyPort null The proxy port number.

proxyAuthMethod null Authentication method for proxy, either as , or .Basic Digest NTLM

proxyAuthUsername null Username for proxy authentication.

proxyAuthPassword null Password for proxy authentication.

proxyAuthDomain null Domain for proxy authentication.NTLM

proxyAuthHost null Optional host for proxy authentication.NTLM

When using authentication you provide the choice of method for the or options. You can configure the proxy and must authMethod authProxyMethod
authentication details on either the or the . Values provided on the will take precedence over HttpComponent HttpEndoint HttpEndpoint HttpCompo

. Its most likely best to configure this on the which allows you to do this once.nent HttpComponent

The component uses convention over configuration which means that if you have not explicit set a then it will fallback and HTTP authMethodPriority
use the select(ed) as priority as well. So if you use then the will be only.authMethod authMethod.Basic auhtMethodPriority Basic

Note: is based on HttpClient v3.x and as such has only for what is known as NTLMv1, the early version of the NTLM camel-http limited support
protocol. It does not support NTLMv2 at all. has support for NTLMv2.camel-http4

HttpComponent Options
confluenceTableSmall

Name Default
Value

Description

httpBinding null To use a custom .org.apache.camel.component.http.HttpBinding

httpClientConfigur
er

null To use a custom .org.apache.camel.component.http.HttpClientConfigurer

httpConnectionMana
ger

null To use a custom .org.apache.commons.httpclient.HttpConnectionManager

httpConfiguration null To use a custom org.apache.camel.component.http.HttpConfiguration.

allowJavaSerialize
dObject

false Camel 2.16.1/2.15.5: Whether to allow java serialization when a request uses context-
.type=application/x-java-serialized-object

If you enable this then be aware that Java will deserialize the incoming data from the request to Java and that
can be a potential security risk.

HttpConfiguration contains all the options listed in the table above under the section .HttpConfiguration - Setting Authentication and Proxy

Message Headers
confluenceTableSmall

Name Type Description

Exchange.
HTTP_URI

String URI to call. Will override existing URI set directly on the endpoint. This URI is the URI of the HTTP server to call. Its not
the same as the Camel endpoint URI, where you can configure endpoint options such as security etc. This header does
not support that, its only the URI of the HTTP server.

http://hc.apache.org/httpclient-3.x/authentication.html#NTLM

Exchange.
HTTP_METHOD

String HTTP method/verb to use.

Can be one of:

GET
POST
PUT
DELETE
HEAD
OPTIONS
TRACE

Exchange.
HTTP_PATH

String The request URI's path. The header will be used to build the request URI with the .HTTP_URI

From if the path starts with a , the will try to find the relative path based on the Camel 2.3.0: / HttpProducer Exchange
 header or the ..HTTP_BASE_URI exchange.getFromEndpoint().getEndpointUri();

Exchange.
HTTP_QUERY

String URI parameters. Will override existing URI parameters set directly on the endpoint.

Exchange.
HTTP_RESPONS
E_CODE

int The HTTP response code from the external server. Is for OK.200

Exchange.
HTTP_CHARACT
ER_ENCODING

String Character encoding.

Exchange.
CONTENT_TYPE

String The HTTP content type. Is set on both the and message to provide a content type, such as .IN OUT text/html

Exchange.
CONTENT_ENCO
DING

String The HTTP content encoding. Is set on both the and message to provide a content encoding, such as IN OUT .gzip

Exchange.
HTTP_SERVLET
_REQUEST

HttpSe
rvletR
equest

The object.HttpServletRequest

Exchange.
HTTP_SERVLET
_RESPONSE

HttpSe
rvletR
esponse

The object.HttpServletResponse

Exchange.
HTTP_PROTOCO
L_VERSION

String From You can set the HTTP protocol version with this header, e.g., . If the header is not present Camel 2.5: HTTP/1.0
the will use the default value .HttpProducer HTTP/1.1

Note: The header names above are constants. For the spring DSL you have to use the value of the constant instead of the name.

Message Body

Camel will store the HTTP response from the external server on the body. All headers from the message will be copied to the message, so OUT IN OUT
headers are preserved during routing. Additionally Camel will add the HTTP response headers as well to the message headers.OUT

Response Code

Camel will handle according to the HTTP response code:

Response code is in the range , Camel regards it as a success response.100..299
Response code is in the range , Camel regards it as a redirection response and will throw a with 300..399 HttpOperationFailedException
the information.
Response code is , Camel regards it as an external server failure and will throw a with the information.400+ HttpOperationFailedException

throwExceptionOnFailure
The option, can be set to to prevent the from being thrown for , throwExceptionOnFailure false HttpOperationFailedException
failed response codes. This allows you to get any response from the remote server.
There is a sample below demonstrating this.

HttpOperationFailedException

This exception contains the following information:

The HTTP status code.
The HTTP status line (text of the status code).
Redirect location, if server returned a redirect.
Response body as a , if server provided a body as response.java.lang.String

1.
2.
3.
4.
5.

Calling Using or GET POST

The following algorithm is used to determine if either or HTTP method should be used:GET POST

Use method provided in header.
GET if query string is provided in header.
GET if endpoint is configured with a query string.
POST if there is data to send (body is not null).
GET otherwise.

How To Access The and HttpServletRequest HttpServletResponse

You can get access to these two using the Camel type converter system using:

javaHttpServletRequest request = exchange.getIn().getBody(HttpServletRequest.class); HttpServletRequest response = exchange.getIn().getBody
(HttpServletResponse.class);

Using Client Timeout - SO_TIMEOUT

See the unit test in this link

More Examples

Configuring a Proxy

Java DSL

from("direct:start") .to("http://oldhost?proxyHost=www.myproxy.
com&proxyPort=80");

There is also support for proxy authentication via the and options.proxyUsername proxyPassword

Using Proxy Settings Outside of the URI

Java DSL Spring DSL

context.getProperties().put("http.proxyHost",
"172.168.18.9"); context.getProperties().put("http.proxyPort"
"8080");

<camelContext> <properties> <property key="http.proxyHost" value="172.168.18.9"/>
<property key="http.proxyPort" value="8080"/> </properties> </camelContext>

Options on will override options on the context.Endpoint

Configuring charset

If you are using to send data you can configure the :POST charset

.setProperty(Exchange.CHARSET_NAME, "iso-8859-1");

Sample with Scheduled Poll

The sample polls the Google homepage every 10 seconds and write the page to the file :message.html

javafrom("timer://foo?fixedRate=true&delay=0&period=10000") .to("http://www.google.com") .setHeader(FileComponent.HEADER_FILE_NAME, "message.
html") .to("file:target/google");

Getting the Response Code

You can get the HTTP response code from the HTTP component by getting the value from the message header with OUT Exchange.
:HTTP_RESPONSE_CODE

javaExchange exchange = template.send("http://www.google.com/search", new Processor() { public void process(Exchange exchange) throws Exception {
exchange.getIn().setHeader(Exchange.HTTP_QUERY, constant("hl=en&q=activemq")); } }); Message out = exchange.getOut(); int responseCode = out.
getHeader(Exchange.HTTP_RESPONSE_CODE, Integer.class);

Using To Obtain All Server ResponsesthrowExceptionOnFailure=false

http://svn.apache.org/viewvc?view=rev&revision=781775

In the route below we want to route a message that we with data returned from a remote HTTP call. As we want all responses from the remote enrich
server, we set the so we get any response in the . As the code is based on a unit test throwExceptionOnFailure=false AggregationStrategy
that simulates a HTTP status code 404, there is some assertion code etc.{snippet:id=e1|lang=java|url=camel/tags/camel-2.2.0/components/camel-jetty/src
/test/java/org/apache/camel/component/jetty/JettySimplifiedHandle404Test.java}

Disabling Cookies

To disable cookies you can set the HTTP Client to ignore cookies by adding this URI option: httpClient.cookiePolicy=ignoreCookies

Advanced Usage

If you need more control over the HTTP producer you should use the where you can set various classes to give you custom behavior.HttpComponent

Setting MaxConnectionsPerHost

The Component has a where you can configure various global configuration HTTP org.apache.commons.httpclient.HttpConnectionManager
for the given component. By global, we mean that any endpoint the component creates has the same shared . So, if we want HttpConnectionManager
to set a different value for the max connection per host, we need to define it on the HTTP component and on the endpoint URI that we usually use. So not
here comes:

First, we define the component in Spring XML. Yes, we use the same scheme name, , because otherwise Camel will auto-discover and create http http
the component with default settings. What we need is to overrule this so we can set our options. In the sample below we set the max connection to 5
instead of the default of 2.{snippet:id=e1|lang=xml|url=camel/tags/camel-2.2.0/tests/camel-itest/src/test/resources/org/apache/camel/itest/http

And then we can just use it as we normally do in our routes:/HttpMaxConnectionPerHostTest-context.xml} {snippet:id=e2|lang=xml|url=camel/tags/camel-
2.2.0/tests/camel-itest/src/test/resources/org/apache/camel/itest/http/HttpMaxConnectionPerHostTest-context.xml}

Using Pre-Emptive Authentication

If an HTTP server should fail to respond correctly with an expected response for a failed authentication attempt a client 401 Authorization Required
can instead use preemptive authentication by specifying the URI option: .httpClient.authenticationPreemptive=true

Accepting Self-Signed Certificates From Remote Server

See this from a mailing list discussion with some code to outline how to do this with the Apache Commons HTTP API.link

Setting up SSL for HTTP Client

Using the JSSE Configuration Utility

From : the component supports SSL/TLS configuration through the . This utility greatly decreases the Camel 2.8 HTTP4 Camel JSSE Configuration Utility
amount of component specific code you need to write and is configurable at the endpoint and component levels. The following examples demonstrate how
to use the utility with the component.HTTP4

The version of the Apache HTTP client used in this component resolves SSL/TLS information from a global "protocol" registry. This component provides
an implementation, , of the HTTP client's org.apache.camel.component.http.SSLContextParametersSecureProtocolSocketFactory
protocol socket factory in order to support the use of the Camel JSSE Configuration utility. The following example demonstrates how to configure the
protocol registry and use the registered protocol information in a route.

javaKeyStoreParameters ksp = new KeyStoreParameters(); ksp.setResource("/users/home/server/keystore.jks"); ksp.setPassword("keystorePassword");
KeyManagersParameters kmp = new KeyManagersParameters(); kmp.setKeyStore(ksp); kmp.setKeyPassword("keyPassword"); SSLContextParameters
scp = new SSLContextParameters(); scp.setKeyManagers(kmp); ProtocolSocketFactory factory = new
SSLContextParametersSecureProtocolSocketFactory(scp); Protocol.registerProtocol("https", new Protocol("https", factory, 443)); from("direct:start") .to
("https://mail.google.com/mail/") .to("mock:results");

Configuring Apache HTTP Client Directly

Basically component is built on the top of Apache HTTP client, and you can implement a custom camel-http org.apache.camel.component.http.
 to do some configuration on the HTTP client if you need full control of it.HttpClientConfigurer

However, if you want to specify the and you can do this with Apache HTTP , for example:just keystore truststore HttpClientConfigurer

javaProtocol authhttps = new Protocol("https", new AuthSSLProtocolSocketFactory(new URL("file:my.keystore"), "mypassword", new URL("file:my.
truststore"), "mypassword"), 443); Protocol.registerProtocol("https", authhttps);

And then you need to create a class that implements , and registers HTTPS protocol providing a or HttpClientConfigurer keystore truststore
per example above. Then, from your Camel RouteBuilder class you can hook it up like so:

javaHttpComponent httpComponent = getContext().getComponent("http", HttpComponent.class); httpComponent.setHttpClientConfigurer(new
MyHttpClientConfigurer());

If you are doing this using the Spring DSL, you can specify your using the URI. For example:HttpClientConfigurer

xml<bean id="myHttpClientConfigurer" class="my.https.HttpClientConfigurer"/> <to uri="https://myhostname.com:443/myURL?
httpClientConfigurerRef=myHttpClientConfigurer"/>

https://cwiki.apache.org/confluence/display/CAMEL/Content+Enricher
http://www.nabble.com/Using-HTTPS-in-camel-http-when-remote-side-has-self-signed-cert-td25916878.html
https://cwiki.apache.org/confluence/display/CAMEL/Camel+Configuration+Utilities

As long as you implement the and configure your and as described above, it will work fine.HttpClientConfigurer keystore truststore

Endpoint See Also

Jetty

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint+See+Also
https://cwiki.apache.org/confluence/display/CAMEL/Jetty

	HTTP

