
Releasing(OUTDATED)
This page describes the release process of Apache Flink.

Verifying a Release Candidate

PLEASE NOTE: It is necessary to run all checks to cast a vote for a release candidate.NOT
However, you should clearly state which checks you did.
The release manager needs to ensure that each following check was done.

Legal: (required checks for a valid ASF compilant release)

Check if checksums and GPG files match the corresponding release files

Verify that the source archives do not contains any binaries

Check if the source release is building properly with Maven (including license header check (default) and checkstyle). Also the tests should be
executed (mvn clean verify)

check build for custom hadoop version
check build for Scala 2.11

Verify that the LICENSE and NOTICE file is correct .for the binary and source release
All dependencies must be checked for their license and the license must be ASL 2.0 compatible (http://www.apache.org/legal/resolved.

)html#category-x
The LICENSE and NOTICE files in the root directory refer to dependencies in the source release, i.e., files in the git repository (such as
fonts, css, JavaScript, images)
The LICENSE and NOTICE files in refer to the binary distribution and mention all of Flink's flink-dist/src/main/flink-bin
Maven dependencies as well

Check that all POM files point to the same version (mostly relevant to examine quickstart artifact files)

Read the README.md file

Functional: (checks for delivering a release with good quality)

Run the , scripts and verify that the processes come upstart-local.sh start-cluster.sh
Examine the *.out files (should be empty) and the log files (should contain no exceptions)
Test for Linux, OS X, Windows (for Windows as far as possible, not all scripts exist)
Shutdown and verify there are no exceptions in the log output (after shutdown)
Check all start+submission scripts for paths with and without spaces (./bin/* scripts are quite fragile for paths with spaces)

Verify that the examples are running from both ./bin/flink and from the web-based job submission tool
Should be run on

local mode (start-local.sh)
cluster mode (start-cluster.sh)
multi-node cluster (can simulate locally by starting two taskmanagers)

The flink-conf.yml should define more than one task slot

Results of job are produced and correct
Check also that the examples are running with the build-in data and external sources.

Examine the log output - no error messages should be encountered
Web interface shows progress and finished job in history

Test on a cluster with HDFS.
Check that a good amount of input splits is read locally (JobManager log reveals local assignments)

Test against a Kafka installation

Test the command line client./bin/flink
Test option, paste the JSON into the plan visualizer HTML file, check that plan is rendered"info"
Test the parallelism flag () to override the configured default parallelism-p

Verify the plan visualizer with different browsers/operating systems

Verify that the quickstarts for scala and java are working with the staging repository for both IntelliJ and Eclipse.

http://www.apache.org/legal/resolved.html#category-x
http://www.apache.org/legal/resolved.html#category-x

in particular the dependencies of the quickstart project need to be set correctly and the QS project needs to build from the staging
repository (replace the snapshot repo URL with the staging repo URL)
The dependency tree of the QuickStart project must not contain any dependencies we shade away upstream (guava, netty, ...)
Test that quickstart archetypes are working on all platforms

Run examples on a YARN cluster

Run all examples from the IDE (Eclipse & IntelliJ)

Run an example with the RemoteEnvironment against a cluster started from the shell script

Pay special attention to new features

Test recovery and exactly-once guarantees with master and worker failures @todo @uce Will update this with scripts
YARN (see for details)https://github.com/apache/flink/pull/1213

2.3.0 <= version < 2.4.0
Set yarn.application-attempts for Flink
Set yarn.resourcemanager.am.max-attempts for YARN (upper bound on number of failures)
Note: it's expected for these Hadoop versions that all containers are killed when the application master fails

2.4.0 <= version < 2.6.0
Important: in this version the task manager containers should stay alive when the application master is killed

2.6.0 <= version
Check that the application is only killed by YARN after the system has seen the maximum number of application
attempts during one interval

Standalone
Start multiple JobManager and TaskManager instances
Kill random instances (make sure that enough task slots and standby job managers are available)

Test building a SBT project depending on Flink and an optional dependency (connector, gelly, flink-ml).
Test the Scala/SBT giter8 template `g8 tillrohrmann/flink-project`
Test the Scala/SBT vanilla project in https://github.com/tillrohrmann/flink-project
Test the Scala/SBT quickstart script under https:/flink.apache.org/q/sbt-quickstart.sh

Documentation

Check that all links work, the front page is up to date
Check that new features are documented and updates to existing features are written down.
Ensure that the migration guide from the last release to the new release is available and up to date.

Creating a release candidate
Read and understand: http://www.apache.org/dev/release-publishing.html
Read and create yourself a PGP keyhttp://www.apache.org/dev/release-signing.html
run the ./tools/create_release_files.sh script from the Flink repo, with the following parameters: (the call below as used to create RC1 of Flink 0.8.1

sonatype_user=YOURAPACHEID sonatype_pw=YOURAPACHEIDPASSWORD NEW_VERSION=0.8.1 RELEASE_CANDIDATE="rc1"
RELEASE_BRANCH=release-0.8 OLD_VERSION=0.8-SNAPSHOT USER_NAME=YOURAPACHEID
GPG_PASSPHRASE=YOURGPGPASSPHRASE GPG_KEY=YOURGPGKEY
GIT_AUTHOR="`git config --get user.name` <`git config --get user.email`>" ./create_release_files.sh

Note: Make sure to run the ./tools/create_release_files.sh script (in particular the "mvn deploy" call) with Java 8 to release the java8 module to
mvn central as well.
Don't forget to update the documentation configuration to the new release version
Usually the create_release_files.sh script needs to be adopted a bit depending on the used linux distribution
Open repository.apache.org, login in with your Apache user, and close the staging repository you created (DO NOT PRESS "RELEASE"!)
Check that the release files are located in your people.apache.org home directory
go to the ./tools/flink directory and push the release commit to release-x.y.z-rcn branch. (DO NOT CHANGE THE COMMIT OR COMMIT THE
LOCAL CHANGES, the release commit has already been created.)
Send the VOTE mail to the list, containing the release commit hash, the link to your people.apache.org and to the staging dev@flink.a.o
repository.

Releasing a Release Candidate
Create a git tag for the release
Upload binaries to svn repo at: (sync needs 24 hours)https://dist.apache.org/repos/dist/release/flink
Release staging repository to Maven Central.https://repository.apache.org/

After this step, add the release to the Apache Report Helper at (if you are not a PMC https://reporter.apache.org/addrelease.html?flink
member, ask one for help)

Update Flink website with updated download URLs and Maven artifacts (by updating the _config.yml)
Don't forget to update the quickstarts versions

#
https://github.com/apache/flink/pull/1213
https://github.com/tillrohrmann/flink-project
http://www.apache.org/dev/release-publishing.html
http://www.apache.org/dev/release-signing.html
mailto:dev@flink.a.o
https://dist.apache.org/repos/dist/release/flink
https://repository.apache.org/
https://reporter.apache.org/addrelease.html?flink

Update list of contributors wiki page with new contributors in the release
Update Homebrew: https://gist.github.com/EronWright/b62bd3b192a15be4c200a2542f7c9376
Publish release announcement blog post
Email to dev, news, user AT flink.a.o; also announce AT apache.
Update the reference Flink version in the japicmp maven plugin for the API stability checks to the just released major version.

https://gist.github.com/EronWright/b62bd3b192a15be4c200a2542f7c9376

	Releasing(OUTDATED)

