
RoutePolicy

RoutePolicy

Available as of Camel 2.1

A route policy is used to control route(s) at runtime. For example you can use it to determine whether a route org.apache.camel.spi.RoutePolicy
should be running or not. However the policies can support any kind of use cases.

How it works

You associate a route with a given and then during runtime Camel will invoke callbacks on this policy where you can implement your RoutePolicy
custom logic. Camel provides a support class that is a good base class to extend .org.apache.camel.impl.RoutePolicySupport

There are these callbacks invoked:

onInit Camel 2.3
onRemove Camel 2.9
onStart Camel 2.9
onStop Camel 2.9
onSuspend Camel 2.9
onResume Camel 2.9
onExchangeBegin
onExchangeDone

See the Javadoc of the for more details. And also the implementation of the org.apache.camel.spi.RoutePolicy org.apache.camel.impl.
 or for a concrete example.ThrottlingInflightRoutePolicy org.apache.camel.impl.ThrottlingExceptionRoutePolicy

Camel provides the following policies out of the box:

org.apache.camel.impl.ThrottlingInflightRoutePolicy - a throttling based policy that automatic suspends/resumes route(s) based
on metrics from the current in flight exchanges. You can use this to dynamically throttle e.g. a consumer, to avoid it consuming too fast.JMS
org.apache.camel.impl.ThrottlingExceptionRoutePolicy - a policy that implements the circuit breaker EIP. This policy will stop
consuming from an endpoint based on the number of exceptions that are thrown on the route. This can be used to avoid scenarios where failures
on the route cause the message to be rolled back and then re-consumed without being able to be processed.

As of , Camel also provides an ability to schedule routes to be activated, deactivated, suspended and/or resumed at certain times during the day Camel 2.5
using a (offered via the component).ScheduledRoutePolicy camel-quartz

ThrottlingInflightRoutePolicy

The is triggered when an is complete, which means that it requires at least one to be ThrottlingInflightRoutePolicy Exchange Exchange
complete before it .works

The throttling inflight route policy has the following options:

Option Default Description

scope Route A scope for either or which defines if the current number of inflight exchanges is Route Context
context based or for that particular route.

maxInflightEx
changes

1000 The maximum threshold when the throttling will start to suspend the route if the current number of
inflight exchanges is higher than this value.

resumePercent
OfMax

70 A percentage which defines when the throttling should resume again in case it has been 0..100
suspended.

loggingLevel INFO The logging level used for logging the throttling activity.

logger ThrottlingInflightRo
utePolicy

The logger category.

SuspendableService

If you want to dynamic suspend/resume routes as the does then its advised to use org.apache.camel.impl.ThrottlingRoutePolicy or
 as it allows for fine grained and operations. And use the g.apache.camel.SuspendableService suspend resume org.apache.camel.

 to aid when invoking these operations as it support fallback for regular instances.util.ServiceHelper org.apache.camel.Service

https://cwiki.apache.org/confluence/display/CAMEL/JMS
https://cwiki.apache.org/confluence/display/CAMEL/ScheduledRoutePolicy
http://camel.apache.org/quartz.html
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

ThrottlingExceptionRoutePolicy

The (available as of Camel 2.19) is an implementation of the circuit breaker EIP. It is triggered when an ThrottlingExceptionRoutePolicy Exchange
 is complete (), which means that it requires at least one to be complete before it works.onExchangeDone Exchange

The throttling exception route policy has the following states:

closed: the route will consume messages from the defined endpoint.
open: the route will be suspended and will not consume messages from the defined endpoint.

the route is opened when a configurable number of exceptions occurs withing a specified time frame.
half-open: the route will perform a check to see if the route can be moved from open to closed.

this will occur by resuming the route and checking for exceptions or by calling an implementation of the ThrottlingExceptionHalfOp
enHandler.

If an exception is caught when the route is resumed it will re-open, otherwise it will move to the closed state.
If the implemenation of is provided and the isReadyToBeClosed method returns ThrottlingExceptionHalfOpenHandler
true the route will be moved to the closed state. Otherwise it will be moved to the open state.

The throttling exception route policy has the following options:

Option Default Description

failure
Thresho
ld

0 The number of exceptions that must be caught before the circuit controlling the route is opened.

failure
Window

0 The time range, in milliseconds, in which the number of exceptions must occur in order for the circuit to be opened.

halfOpe
nAfter

0 Defines how long the circuit will remain open, in milliseconds, before the circuit is moved into the half-open state.

throttl
edExcep
tions

null An optional of exceptions. If this option is set, only these exceptions will count towards meeting the List<Class<?>>
failureThreshold. If this list is left as null any exception will be counted toward the failureThreshold.

halfOpe
nHandler

null An optional implementation of the ThrottlingExceptionHalfOpenHandler. When provided, the policy will delegate the
handling of the half-open state to this class. If it is left as null, the route will resume during the half open state. It is possible for
more than one message to be read from the endpoint when the route is resumed during the half-open state.

keepOpen false This option allows the circuit to be placed in the open state when set to true. It overrides all other (new as of Camel 2.21)
settings and the half open state will not be processed. The circuit will not be moved out of the open state until this option is set
to false.

In the example below, a simple route is configured to open after 2 exceptions are thrown within 30 seconds of each other. When 60 seconds have expired
the route will be moved into the half-open state. CustomHalfOpenHandler. This The check performed during the half-open state will be delegated to the
class provides an option to check for resources that may be failing independent of resuming the route.

@Override
public void configure() throws Exception {
 int threshold = 2;
 long failureWindow = 30000;
 long halfOpenAfter = 60000;

 ThrottlingExceptionRoutePolicy policy = new ThrottlingExceptionRoutePolicy(threshold, failureWindow,
halfOpenAfter, null);
 policy.setHalfOpenHandler(new CustomHalfOpenHandler());

 from(url)
 .routePolicy(policy)
 .log("${body}")
 .to("log:foo?groupSize=10")
 .to("mock:result");
 }

ThrottlingInflightRoutePolicy compared to the [Throttler] EIP

The compared to is that it does block during throttling. It does throttling that is approximate ThrottlingInflightRoutePolicy Throttler not
based, meaning that its more coarse grained and not explicit precise as the . The can be much more accurate and only allow a Throttler Throttler
specific number of messages being passed per a given time unit. Also the is based its metrics on ThrottlingInflightRoutePolicy
number of inflight exchanges where as is based on number of messages per time unit.Throttler

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Throttler
https://cwiki.apache.org/confluence/display/CAMEL/Throttler
https://cwiki.apache.org/confluence/display/CAMEL/Throttler
https://cwiki.apache.org/confluence/display/CAMEL/Throttler

ScheduledRoutePolicy (Simple and Cron based) using camel Quartz

For more details check out the following links

Configuring Policy

You configure the route policy as follows from Java DSL, using the method:routePolicy

 RoutePolicy myPolicy = new MyRoutePolicy();
 from("seda:foo").routePolicy(myPolicy).to("mock:result");

In Spring XML its a bit different as follows using the attribute:routePolicyRef

<bean id="myPolicy" class="com.mycompany.MyRoutePolicy"/>

<route routePolicyRef="myPolicy">
 <from uri="seda:foo"/>
 <to uri="mock:result"/>
</route>

Configuring Policy Sets

Available as of Camel 2.7

RoutePolicy has been further improved to allow addition of policy sets or a collection of policies that are concurrently applied on a route. The addition of
policies is done as follows.

In the example below, the route has a and applied concurrently. Both policies are applied as necessary on testRoute startPolicy throttlePolicy
the route.

<bean id="date" class="org.apache.camel.routepolicy.quartz.SimpleDate"/>

<bean id="startPolicy" class="org.apache.camel.routepolicy.quartz.SimpleScheduledRoutePolicy">
 <property name="routeStartDate" ref="date"/>
 <property name="routeStartRepeatCount" value="1"/>
 <property name="routeStartRepeatInterval" value="3000"/>
</bean>

<bean id="throttlePolicy" class="org.apache.camel.impl.ThrottlingInflightRoutePolicy">
 <property name="maxInflightExchanges" value="10"/>
</bean>

<camelContext id="testRouteContext" xmlns="http://camel.apache.org/schema/spring">
 <route id="testRoute" autoStartup="false" routePolicyRef="startPolicy, throttlePolicy">
 <from uri="seda:foo?concurrentConsumers=20"/>
 <to uri="mock:result"/>
 </route>
</camelContext>

Using RoutePolicyFactory

Available as of Camel 2.14

If you want to use a route policy for every route, you can use a as a factory for creating a org.apache.camel.spi.RoutePolicyFactory RoutePoli
 instance for each route. This can be used when you want to use the same kind of route policy for every routes. Then you need to only configure the cy

factory once, and every route created will have the policy assigned.

There is API on CamelContext to add a factory, as shown below

context.addRoutePolicyFactory(new MyRoutePolicyFactory());

And from XML DSL you just define a with the factory<bean>

<bean id="myRoutePolicyFactory" class="com.foo.MyRoutePolicyFactory"/>

The factory has a single method that creates the route policy

 /**
 * Creates a new {@link org.apache.camel.spi.RoutePolicy} which will be assigned to the given route.
 *
 * @param camelContext the camel context
 * @param routeId the route id
 * @param route the route definition
 * @return the created {@link org.apache.camel.spi.RoutePolicy}, or <tt>null</tt> to not use a policy for
this route
 */
 RoutePolicy createRoutePolicy(CamelContext camelContext, String routeId, RouteDefinition route);

Note you can have as many route policy factories as you want. Just call the again, or declare the other factories as in addRoutePolicyFactory <bean>
XML.

See Also

Route Throttling Example for an example using this in practice with the ThrottlingInflightRoutePolicy
ScheduledRoutePolicy for information on policy based scheduling capability for camel routes
MetricsRoutePolicyFactory for information on a policy using the metrics component to expose route statistics using the metrics library.
Architecture

https://cwiki.apache.org/confluence/display/CAMEL/Route+Throttling+Example
https://cwiki.apache.org/confluence/display/CAMEL/ScheduledRoutePolicy
https://cwiki.apache.org/confluence/display/CAMEL/Metrics+Component
https://cwiki.apache.org/confluence/display/CAMEL/Architecture

	RoutePolicy

