CacheWriter and CachelListener Best Practices

Geode provides APIs such that a distributed system can capture events, invoking callbacks to process those events either synchronously or
asynchronously.

This document covers best practices for the CacheW i t er and the Cacheli st ener.

Event Model

blocked URL

Cache Writers

A CacheWi t er is an event handler invoked synchronously prior to an event. A cache writer is often used to validate data prior to an update of that data.
It may also do a synchronization with external data sources. This provides a write-through capability for regions handling events that can be local, within
the same JVM, or remote, in the case of replicated or partitioned region.

Basic rules:
® There can be only one CacheW i t er per region.
® For partitioned regions, the node that hosts the primary bucket of the data will be the one that invokes the cache writer.
® For replicated regions, only the first node to successfully execute the writer will process the event.
® For local regions, only the local cache writer (if defined) will process the event.
® CacheWi t er can abort operations (fail-fast), and a CacheW i t er Except i on will propagate back to the caller.
L]

Being a synchronous callback, it blocks the application's execution until the handler completes.

CacheW i t er events and callbacks:

beforeCreate(EntryEvent event)- Invoked before an entry is created

bef oreUpdat e(EntryEvent event) - Invoked before an entry is updated

bef oreDestroy(EntryEvent event) - Invoked before an entry is destroyed
bef or eRegi onCl ear (Regi onEvent event) - Invoked before a region is cleared
bef or eRegi onDest r oy(Regi onEvent event) - Invoked before a region is destroyed

Because CacheWriter handlers are called synchronously, the application does not continue until the handler returns. Therefore, do not do long-running
operations inside the handler. If a long-running operation is needed, consider processing the operation asynchronously through an AsyncEvent Li st ener
. Using an Execut or Ser vi ce to delegate the execution to a different thread is possible, but it is an anti-pattern, as it no longer implements the fail-fast
property, and the handling of the event is no longer synchronous, so its timing would not be guaranteed relative to the application's completion of the event.

Cache Listeners

A Cacheli st ener is an event handler invoked synchronously after modifications to a region occur. The main use cases for a Cacheli st ener are
synchronous write-behind and notifications. The CacheLi st ener can handle cache events related to entries (Ent r yEvent) and regions (Regi onEvent),
but events can be processed in a different order than the order in which they’ are applied to the region.

Basic rules:
® You can install multiple Cacheli st ener handlers in the same region.
®* When multiple listeners are installed, the handlers are invoked serially. The invocation ordering is the same as the in which the listeners were
registered.
® For partitioned regions, the node that hosts the primary bucket of the data will be the one that invokes the cache listeners.
® For replicated regions, all nodes with the listener installed will process the event.
® For local regions, only local listeners (if defined) will process the event.
® For long running or batch processing, consider using an Asynchr onousEvent Li st ener.
L]

Being a synchronous callback, the execution of each handler blocks the application's execution until the handler completes.

CachelLi st ener events and callbacks:

https://github.com/project-geode/docs/wiki/CacheWriter-and-CacheListener-Best-Practices#event-model
https://github.com/project-geode/docs/wiki/images/events.png
https://github.com/project-geode/docs/wiki/CacheWriter-and-CacheListener-Best-Practices#cache-writers
https://github.com/project-geode/docs/wiki/CacheWriter-and-CacheListener-Best-Practices#basic-rules
https://github.com/project-geode/docs/wiki/CacheWriter-and-CacheListener-Best-Practices#cache-listeners
https://github.com/project-geode/docs/wiki/CacheWriter-and-CacheListener-Best-Practices#basic-rules-1

afterCreate(EntryEvent <K, V> event) - Invoked after a new key is added to a region

afterDestroy(EntryEvent <K, V> event) - Invoked after an entry is destroyed

afterlnvalidate(EntryEvent <K, V> event) - Invoked after an entry's value is invalidated

af t er Regi onCl ear (Regi onEvent <K, V> event) - Invoked after a region is cleared

af t er Regi onCr eat e(Regi onEvent <K, V> event) - Invoked after a region is created

af t er Regi onDest r oy(Regi onEvent <K, V> event) - Invoked after a region is destroyed

af t er Regi onl nval i dat e(Regi onEvent <K, V> event) - Invoked after a region is invalidated

af t er Regi onLi ve(Regi onEvent <K, V> event) - Invoked after a region becones live after receiving the marker from
the server

af t er Updat e(EntryEvent <K, V> event) - Invoked after an entry's value is nodified

General recommendations
When dealing with Geode callbacks, there are some operations that should be avoided or used with extra attention. Some general recommendations are:

Do not perform distributed operations, such as using the Distributed Lock service.

Avoid calling Region methods, particularly on non-colocated, partitioned regions.

Avoid calling functions through Funct i onSer vi ce, since the function's execution can cause distributed deadlock.

Do not use any Geode APIs inside a CachelLi st ener if you have conserve-sockets set to true.

Do not modify region attributes, since those messages will have priority and can cause blocks.

Avoid configurations in which listeners or writers are deployed in a few nodes of the distributed system. Prefer a cluster-wide installation where
every node can process the callback.

Any exceptions thrown are caught and logged, so users can troubleshoot using Geode logs.

EntryEvent . get Newval ue() or EntryEvent. get O dVal ue() can result in deserializations, unless PDX and r ead- seri al i zed=t rue ar
e used.

® Operations inside a CachelLi st ener ora CacheWi t er are thread-safe, and entries are locked for the current thread.

When using transactions:

® A CacheWi ter should not start transactions.

* Both CacheWiter and any CacheLi st ener will receive all individual operations as part of a transaction, unlike their transactional
counterparts Tr ansacti onWiter and Tr ansacti onLi st ener.

® When a rollback or commit happens, a CacheW i t er can only be notified by a Tr ansacti onW i t er, and should handle rollback or failures
properly.

® CacheWit er Excepti on is still propagated to the application, and it should handle the failures in the context of the transaction by continuing or
aborting; JTA is the recommended alternative.

® |n most cases when dealing with transactions, consider using a Tr ansacti onWi t er, instead of a CacheWiter.

® With global transactions, Ent r yEvent . get Tr ansact i onl d() will return the current internal transaction ID.

® Use the same transactional data source and make sure it is JTA-enabled, so database operations inside a CacheW i t er can be rolled back and
participate in the same global transaction.

When dealing with transactions always consider using Tr ansact i onLi st ener or Transacti onW i t er for handling transaction events, but do notice
that they are cache-wide handlers.

blocked URL

https://github.com/project-geode/docs/wiki/CacheWriter-and-CacheListener-Best-Practices#general-recommendations
https://github.com/project-geode/docs/wiki/images/cwclflow.png

	CacheWriter and CacheListener Best Practices

