
Coding Style
Coding Style
This document described the coding style for the Apache Traffic Server project. The document is still evolving, but all contributors and committers are
encourage to read this before contributing patches. And as usual, additions and edits to this document is appreciated, to assure that we all share the same
coding style. For major changes to the style, a discussion should be opened on the dev@ mailing before changed here.

Coding Style
Overview

Public APIs (ts/ts.h, ts/experimental.h etc.)
Internal code

Header files
Indentation

Vertical whitespace
clang-format binary and configuration

Naming conventions
Classes and Structures
Methods
Member Variables

Comments
TODO comments
XXX comments
no break comments

Overview
Code indentation and formatting was completely standardized prior to open sourcing the Apache Traffic Server code. Command line tool did most indent
of the heavy lifting. This document will describe the indentation, formatting, doxygen comments, class naming, and naming conventions to use.

Public APIs (ts/ts.h, ts/experimental.h etc.)

The public (API) headers

Internal code

For all other code that's internal, the prefix should be one of

ATS or ATS_
ats or ats_
INK or INK_
ink or ink_

No new code / functionality should be added using the prefix. Long term, we will migrate these into the prefix. Adhering to these rules is ink/INK ats/ATS
important, the goal is to be able to easily distinguish public from private APIs. In the past, we've had several cases where public APIs were used in the
private code implementation, and this is a bad idea for both performance and functionality.

Header files

In most subsystems, header files are named with a or prefix. files should contain any types and definitions that are private to the subsystem, P_ I_ P_
while the public interface should be contained in a -prefixed header.I_

Indentation
We have changed from the previous indentation rules, to rely completely on . The style is mostly the same as it was before, which means:clang-format

2-space indentation (never tabs)
132-character wide lines
A clang-format based primarily on the Mozilla formatting. But, note that we have our own .clang-format in the top-level of the source tree.

DEPRECATED

Below P_ & I_ prefix rule for header file are deprecated. In some subsystems, this naming by historical reasons, but convention is still used
these files are going to be removed.
https://lists.apache.org/thread.html/f2c18b4654a968e3f275f8624eeef6cb78e01d4989ffa90d14af11fb@%3Cdev.trafficserver.apache.org%3E

https://lists.apache.org/thread.html/f2c18b4654a968e3f275f8624eeef6cb78e01d4989ffa90d14af11fb@%3Cdev.trafficserver.apache.org%3E

The easiest way to format the code is to simply run

$ make clang-format

You can also explicitly format one (or several) source files with clang-format directly. Make sure you run it from the top-level directory, which has the
necessary .clang-format configuration file. E.g.

$ clang-format -i proxy/logging/LogAccessHttp.cc

Vertical whitespace

No more than 1 adjacent empty line (clang-format enforces this). Leave a blank line after the closing branch when you have the same indentation level
(clang-format sometimes messes this up).

You should have this :

void
foo(...)
{
 if (...) {
 }

 if (...) {
 }
}

void
bar(...)
{
 ...
}

clang-format binary and configuration

You must use the same clang-format binary as everyone else is. This is unfortunate, but is a side effect of how the clang-format team manages their code.
You can download the current version, from . Alternatively, you can build your own version from the clang / llvm source tree, but the tar-ball April 13th 2018
above includes binaries for both Linux and OS X. You have to copy either of these into somewhere your $PATH will locate, and rename it to just clang
format. E.g.

$ tar xf clang-format-20180413.tar.bz2
$ sudo mv clang-format/clang-format.linux /usr/local/bin/clang-format

In addition to the binaries, there is a git script as well as en Emacs mode for clang-format.

Naming conventions

Classes and Structures

Upper case for the first character of the name
Use camel case (GoodClassName)

Methods

https://bintray.com/apache/trafficserver/clang-format-tools/2018-04-13/view

Use STL style underscored lower case names for method names, (e.g. find_if).
Predicates should use a prefix of "is_" or "has_" to check for a specific propery (e.g. is_valid).
Use "this" when calling other methods in the same class, to distinguish from free functions.

Member Variables

Prepend '_' to the beginning of the private or protected member variable to distinguish it from other variable

Comments

TODO comments

Example of comment TODO:

 // TODO handle case for negative config value

Notice the format:

the TODO is all capitalized
first letter of TODO message does not need to be upper-case
there is no colon or dash char after TODO
there is no period at the end
description is short (70 chars or less if possible) and helpful
the TODO message describes an action that needs to be performed in the future

XXX comments

Example of XXX:

 // XXX Hazardous code! We should find a way to make
 // it more secure

Notice the format:

the XXX is all capitalized
there is no colon or dash char after XXX
there is no period at the end
description is short (70 chars or less if possible) and helpful
the XXX is used to warn other programmers of problematic or misguiding code.

no break comments

When your case will fall through, please add the no break comment with other more detialed comments at the end of the code block.
Example of no break:

 switch (*cur) {
 case ']' : // address close
 n_colon = MAX_COLON - 1;
 /* no break */
 /* fall through until ... */
 case ':' : // track colons, fail if too many.

That will help use understand the codes when someone may mistake that as bug. And be more nice to Eclipse CDT code analysis tool.

	Coding Style

