
WS-ReliableMessaging
WS-Reliable Messaging
CXF supports both the official (WS-ReliableMessaging) protocol using the 1.1/1.2 Web Services Reliable Messaging http://docs.oasis-open.org/ws-rx/wsrm

 namespace and the outdated using the namespace./200702 February 2005 submission version http://schemas.xmlsoap.org/ws/2005/02/rm/

The submission version specified an outdated version of WS-Addressing, using the namespace, which http://schemas.xmlsoap.org/ws/2004/08/addressing
has since been replaced by the official namespace. Most other web services implementations supporting the http://www.w3.org/2005/08/addressing
submission version of WS-ReliableMessaging have deviated from the specification by moving to the official WS-Addressing release with the http://www.w3.

 namespace. CXF supports the submission version of RM with either WS-Addressing namespace.org/2005/08/addressing

For compatibility with older versions of CXF, the default is to use the February 2005 submission version of RM with the submission version of WS-
Addressing. On the client side, you can configure CXF for whichever version of WS-ReliableMessaging you want to use (see Reliable Messaging

, along with the Runtime control properties below). On the provider side, CXF adapts to whichever version of WS-ReliableMessaging is Configuration Guide
used by the client and responds appropriately.

Like most other features in CXF, it is interceptor based. The WS-Reliable Messaging implementation consists of 6 interceptors in total:

Interceptor Task

org.apache.cxf.ws.rm.
RMOutInterceptor

Responsible for sending CreateSequence requests and waiting for their CreateSequenceResponse responses, and and aggregating
the sequence properties (id and message number) for an application message.

org.apache.cxf.ws.rm.
RMInInterceptor

Intercepting and processing RM protocol messages (these will not the application level), as well as SequenceAcknowledgments
piggybacked on application messages.

org.apache.cxf.ws.rm.
RMCaptureInInterceptor

Caching incoming messages for persistent storage.

org.apache.cxf.ws.rm.
RMDeliveryInterceptor

Assuring InOrder delivery of messages to the application.

org.apache.cxf.ws.rm.soap.
RMSoapInterceptor

Encoding and decoding the RM headers

org.apache.cxf.ws.rm.soap.
RetransmissionInterceptor

Responsible for creating copies of application messages for future resends.

Interceptor Based QOS

The presence of the RM interceptors on the respective interceptor chains alone will take care that RM protocol messages are exchanged when necessary.
For example, upon intercepting the first application message on the outbound interceptor chain, the RMOutInterceptor will send a CreateSequence request
and only proceed with processing the original application message after it has the CreateSequenceResponse response. Furthermore, the RM interceptors
are responsible for adding the Sequence headers to the application messages and, on the destination side, extracting them from the message.

This means that no changes to application code are required to make the message exchange reliable!

You can still control sequence demarcation and other aspects of the reliable exchange through configuration however. For example, while CXF by default
attempts to maximize the lifetime of a sequence, thus reducing the overhead incurred by the RM protocol messages, you can enforce the use of a
separate sequence per application message by configuring the RM source's sequence termination policy (setting the maximum sequence length to 1). See
the for more details on configuring this and other aspects of the reliable exchange.Reliable Messaging Configuration Guide

Runtime control

Several message context property values can be set in client code to control the RM operation at runtime, with key values defined by public constants in
org.apache.cxf.ws.rm.RMManager:

Key Value

WSRM_VERSIO
N_PROPERTY

String WS-RM version namespace (or)http://schemas.xmlsoap.org/ws/2005/02/rm/ http://docs.oasis-open.org/ws-rx/wsrm/200702

WSRM_WSA_VE
RSION_PROPER
TY

String WS-Addressing version namespace (or) - this http://schemas.xmlsoap.org/ws/2004/08/addressing http://www.w3.org/2005/08/addressing
property is ignored unless you're using the RM namespace)http://schemas.xmlsoap.org/ws/2005/02/rm/

WSRM_LAST_M
ESSAGE_PROP
ERTY

Boolean value TRUE to tell the RM code that the last message is being sent, allowing the code to close the RM sequence and release resources (as
of the 3.0.0 version of CXF the RM code will by default close the RM sequence when you close your client; earlier versions of CXF did not close the
sequence unless told to using this flag, or if configured with a source policy <wsrm-mgr:sequenceTerminationPolicy terminateOnShutdown="true"/>)

WSRM_INACTIVI
TY_TIMEOUT_P
ROPERTY

Long inactivity timeout in milliseconds

http://docs.oasis-open.org/ws-rx/wsrm/200702
http://schemas.xmlsoap.org/ws/2005/02/rm/
https://cwiki.apache.org/confluence/display/CXF20DOC/WSRMConfiguration
https://cwiki.apache.org/confluence/display/CXF20DOC/WSRMConfiguration
https://cwiki.apache.org/confluence/display/CXF20DOC/WSRMConfiguration

WSRM_RETRAN
SMISSION_INTE
RVAL_PROPERT
Y

Long base retransmission interval in milliseconds

WSRM_EXPONE
NTIAL_BACKOF
F_PROPERTY

Boolean exponential backoff flag

WSRM_ACKNO
WLEDGEMENT_I
NTERVAL_PROP
ERTY

Long acknowledgement interval in milliseconds

You can also monitor and control many aspects of RM using the features of CXF. The full list of JMX operations is defined by org.JMX Management
apache.cxf.ws.rm.ManagedRMManager and org.apache.cxf.ws.rm.ManagedRMEndpoint, but these operations include viewing the current RM state down
to the individual message level. You can also use JXM to close and/or terminate an RM sequence, and to receive notification of when previously-sent
messages are acknowledged by the remote RM endpoint.

For example, if you have the JMX server enabled in your client configuration you could use this code to track the last acknowledgement number received:

 private static class AcknowledgementListener implements NotificationListener {
 private volatile long lastAcknowledgement;

 @Override
 public void handleNotification(Notification notification, Object handback) {
 if (notification instanceof AcknowledgementNotification) {
 AcknowledgementNotification ack = (AcknowledgementNotification)notification;
 lastAcknowledgement = ack.getMessageNumber();
 }
 }

 // initialize client
 ...
 // attach to JMX bean for notifications
 // NOTE: you must have sent at least one message to initialize RM before executing this code
 Endpoint ep = ClientProxy.getClient(client).getEndpoint();
 InstrumentationManager im = bus.getExtension(InstrumentationManager.class);
 MBeanServer mbs = im.getMBeanServer();
 RMManager clientManager = bus.getExtension(RMManager.class);
 ObjectName name = RMUtils.getManagedObjectName(clientManager, ep);
 System.out.println("Looking for endpoint name " + name);
 AcknowledgementListener listener = new AcknowledgementListener();
 mbs.addNotificationListener(name, listener, null, null);

 // send messages using RM with acknowledgement status reported to listener
 ...

https://cwiki.apache.org/confluence/display/CXF20DOC/JMX+Management

	WS-ReliableMessaging

