
Sling API Redesign

Redesign of the Sling API
Status: IMPLEMENTED

There have been a number of threads on the Sling Dev Mailing List on simplifying the current and turn it into a new Sling API. This page Component API
starts at the current state of the discussion as of Oct. 10, 2007, and tries to summarize what has been discussed and to resolve this into a modified
proposal.

[] [] [] [] [] [] [Redesign of the Sling API References Current State Update Modified Content JCR based Operations Replace Content by Resource Exten
] [] []sions to the Resource interface Open Issues Resolving the Servlet

References

SLING-28, Simplify the Sling (aka Component) API
SLING-47, microsling, "Sling reduced to the max"
Simplifying our component api - The original thread launched by Carsten
Move ContentManager to Sling API - My own proposal to make the ContentManager part of the Sling API
Breaking Sling into smaller pieces? - Bertrand's proposal to further modularize parts of Sling such as the current bundlesling-core

Current State

Currently, request processing is controlled by the bundle using two sets of filters: one set called at the time the client request enters Sling - so sling-core
called request level filters - and the other set called for each Content object processed during request processing - so called content level filters.

Amongst the request level filters is the which takes the request URL and finds a object for the URL. This filter ContentResolverFilter Content
implements the interface and is also registered as this service. So other parts of the system may use the same mechanism to resolve ContentResolver
paths to objects. The also implements the default content loading described .Content ContentResolver here

Amongst the content level filters is the which asks the object for its component ID and resolves this ID using the ComponentResolverFilter Content
registered {{Component}}s. This filter also implements the default component resolution described .here

To manage content Sling provides two interfaces:

ContentManager - Basic interface allowing CRUD operations using objects. This interface is completely agnostic of the actual Content
persistence used.
JcrContentManager - Extends the interface integrating with the Jackrabbit OCM interface. This ContentManager ObjectContentManager
provides the API actually used by the to load objects from the JCR repository according to the request ContentResolverFilter Content
URL.

If components would want to create, update and delete content, they would access the by retrieving the ContentManager org.apache.sling.jcr.
 request attribute. If JCR tasks would have to be executed, that retrieved object would be cast to and the content_manager JcrContentManager

session retrieved.

Examples:

Update Modified Content

After having modified the content, a component might do the following to persisted the modified content:

Content content = componentRequest.getContent();

// modify content

ContentManager contentManager = (ContentManager) componentRequest.getAttribute("org.apache.sling.jcr.
content_manager");
contentManager.store(content);
contentManager.save();

JCR based Operations

To operate on a JCR level or to directly access the JCR underlying the request the following might be done:Node Content

http://issues.apache.org/jira/browse/SLING-28
http://issues.apache.org/jira/browse/SLING-47
http://www.mail-archive.com/sling-dev@incubator.apache.org/msg00177.html
http://www.mail-archive.com/sling-dev@incubator.apache.org/msg00267.html
http://www.mail-archive.com/sling-dev@incubator.apache.org/msg00288.html
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=13271153
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=13271153

// get the JCR content manager
JcrContentManager jcrContentManager = (JcrContentManager) componentRequest.getAttribute("org.apache.sling.jcr.
content_manager");

// get the session
Session session = jcrContentManager.getSession();

// access the node addressed by the request URL
String contentPath = componentRequest.getContent().getPath();
Node contentNode = (Node) session.getItem(contentPath);

Arguably, this is tedious. So a first simplification proposal suggested to move the JCR agnostic interface to the Sling API and to provide ContentManager
a getter method on the interface. The returned object might also be cast to a to then access the repository.ComponentRequest JcrContentManager

This proposal sparked a series of reactions (see references above) and so based on Bertrands thoughts, we propose the following change.

Replace by Content Resource

The "problem" of the current Component API is that is centered around a interface which presumably is data provided to the component loaded Content
from the persistence (the JCR repository of course) actually hiding the repository. This also predefines how data is acquired and used, namely by using
Object Content Mapping.

Starting off this situation, we propose replacing the (fully loaded) by a data representation we will call :Content Resource

public interface Resource {

 // the original request URL leading to the resource
 // this is not necessairily the same as ServletRequest.getRequestURL as
 // it may have been processed by some URL mapping and folding
 String getOriginalURI();

 // the path to the actual resource providing the data
 // from the point of view of Sling this is just a string
 String getURI();

 // the selectors of the request or empty array if none
 // the selectors are dot-separated strings after the part of
 // original URI addressing the resource upto the extension
 // Examples:
 // - /a/b/c has no selectors for resource /a/b/c
 // - /a/b/c.html has no selectors for resource /a/b/c
 // - /a/b/c.s1.s2.html has selectors [s1, s2] for resource /a/b/c
 // - /a/b/c.s.html/suffix has selector [s] for resource /a/b/c
 String[] getSelectors();

 // the extension of the request or empty string if none
 // the extension is a string after the last dot after the
 // part of the original URI addressing the resource upto the
 // end of the original URI or a slash
 // Examples:
 // - /a/b/c has no extension for resource /a/b/c
 // - /a/b/c.html has extension html for resource /a/b/c
 // - /a/b/c.s1.s2.html has extension html for resource /a/b/c
 // - /a/b/c.s.html/suffix has extension html for resource /a/b/c
 String getExtension();

 // the suffix of the request or empty string if none
 // the suffix is the string after the next slash after the part
 // of the original URI addressing the resource
 // Examples:
 // - /a/b/c has no suffix for resource /a/b/c
 // - /a/b/c.html has no suffix for resource /a/b/c
 // - /a/b/c.s1.s2.html has no suffix for resource /a/b/c
 // - /a/b/c.s.html/suffix has suffix suffix for resource /a/b/c
 String getSuffix();

}

The interface would be modified as follows:ComponentRequest

The , , , and methods are removed as this getExtension() getSelector(int) getSelectors() getSelectorString() getSuffix()
information can now be obtained from the directly.Resource
The , , and methods are replaced as getContent() getContent(String) getChildren(Content) getRequestDispatcher(Content)
follows:

public interface ComponentRequest extends HttpServletRequest {

 ...

 // Returns the Resource to which the getRequestURL method maps
 Resource getResource();

 // Returns a Resource to which the given URI String maps
 // Implicit: getResource().equals(getResource(getRequestURL()))
 Resource getResource(String uri);

 // Returns an Enumeration child Resources of the given Resource
 // If resource parameter is null, getResource() is used as parent
 // (use Enumeration to stay in line with the HttpServletRequest)
 Enumeration<Resource> getChildren(Resource resource);

 // Gets a RequestDispatcher to include the given resource
 RequestDispatcher getRequestDispatcher(Resource resource);

 ...

}

Extensions to the interfaceResource

The interface may be extended depending on the way, the resource is acquired. For example, there might be a Resource MappedContentResource
which would return an object mapped from any persistence layer, a may encapsulate a JCR based resource. A resolver loading content JcrResource
from a JCR repository using Jackrabbit OCM might return a resource which implements both the and the MappedContentResource JcrResource
interfaces.

MappedContentResource

public interface MappedContentResource extends Resource {

 // Returns the mapped data object
 Object getObject();

}

JcrResource

public interface JcrResource extends Resource {

 // Returns the JCR session used to acquire the Node
 // (this is actually convenience as getNode().getSession()
 // must return the same session)
 Session getSession();

 // Returns the JCR Node addressed by the Resource URI
 // this is the same as getSession().getItem(getURI());
 Node getNode();

}

The existing ContentResolver will be retargeted to the interface and return an object implementing the and the Resource MappedContentResource Jcr
 interfaces if a mapping exists. Otherwise an object just implementing the interface is returned providing just the resolved node.Resource JcrResource

Open Issues

This above definition leaves a series of issues open.

1.

2.

3.

Resolving the Servlet

Currently the interface defines a method which returns the identifier of a to which processing of the request is Content getComponentId() Component
dispatched. With the new interface, no such method exists any more.Resource

The intent is, that resolver would know about the concrete implementations of the interface and could handle the respective Servlet Resource
resources. For example the Sling standard servlet resolver could try the following:

If the is a check the property of the resource node. If such a property exists and denotes a Resource JcrResource sling:servletId
registered service, that servlet is used.Servlet
Otherwise, if the is a , find a service willing to handle requests for the actual object class of the Resource MappedContentResource Servlet
mapped object. The service could be registered with a service property listing the names of the mapped object classes supported.Servlet
Otherwise try to find a registered interface willing to handle the request using the resource path, selectors and/or extensions.Servlet

Alternatively, the interface might have a method providing the identifier of the servlet to use. It might well be that the first Resource getServletId()
solution is the better one.

The interface is removed and the interface is used.Component Servlet

	Sling API Redesign

