
1.
2.
3.
4.
5.

1.
2.
3.
4.

5.
6.
7.

Default Mapping and Rendering (OBSOLETE)

Default Content Mapping and Request Rendering

One of the big obstacles in quick adoption of Sling might arguably be the requirement for multiple developments, such as...

Creating a implementation (or decide on reusing an existing implementation)Content
Defining the mapping descriptor to map the repository contents to the object and vice versaContent
Optionally create a node type defintion file in formatCND
Creating a implementation (or decide on reusing an existing implementation)Component
Package this all up into an OSGi Bundle for deployment

While these steps make sense in an ideal world we all know does not exist (with the exception of Utopia, but there are no computers in Utopia), helpers for
rapid development are needed. These helpers come in the form of usefull defaults on various levels.

Default Content Mapping

When a request is processed by Sling, one step is to resolve the request URL into a object. This works by checking the request URL for the Content
longest match with an existing JCR repository node. The path of this node is then used to load the object through the Content ContentManager.load

 method. If no mapping exists for the given node, an exception is thrown and the request fails.(String)

In such a case of missing content mapping, a default mapping is defined in the form of the Content org.apache.sling.content.jcr.
 class. This mapping has the following features:DefaultContent

The class is a . Thus all properties may be accessed using the familiar API.DefaultContent java.util.Map Map
All non-protected properties of the node are loaded. Single value properties become scalar objects, while multi value properties become java.

 objects.util.List
The types of the repository values are mapped according to the JCR specification for mapping between Property types and Java types.
A few properties have special significance. See below.
Creating new instances of this class and inserting these into the repository creates nodes of type . When loading instances of nt:unstructured
this class the actual primary type of the node does not matter.

Property Type Description

path String The path of the node from which the content was loaded. This must not be modified by application programs, unless you are prepared for
unexpected behaviour when storing the object.

primaryTy
pe

String The primary node type of the (existing) node. This property is purely informational and will never be used when inserting new content or writing
back content.

mixinTypes List of
String

The mixin node types of the (existing) node. This property is purely informational and will never be used when inserting new content or writing
back content. If the node has no mixin node types, this property does not exist.

sling:
component
Id

String The component ID of the component used to handle requests to this content. This property may be modified by application programs (though
you should be aware of the consequences) and is used as the result of the method.Content.getComponentId()

Default Component Selection

After having mapped the JCR repository node into the object the to actually handle the request must be resolved. This is done by Content Component
calling the method and looking up this component ID in an internal table. If either the Content.getComponentId() Content.getComponentId()
method returns or no component is registered with the requested component ID a default resolution processing takes place as follows:null

Let be the result of calling cid Content.getComponentId()
If is , let be the result of calling (this is never }cid null cid Content.getPath() null
Check for a component with the given and use it if existingcid
Otherwise, remove any leading slash from and replace slashes by dots and check for a component with this modified and use it if cid cid
existing
Otherwise, let be the fully qualified name of the object class and check for a component with this modified and use it if existingcid Content cid
Otherwise and if ends with the string , remove that suffix and check for a component with this modified and use it if existingcid Content cid
Otherwise, append to the end of and and check for a component with this modified and use it if existingComponent cid cid

Page Status

This is obsolete content copied from the Sling website on 2010-02-04.

Page Status

2008-02-13: this page is with the current codebase, needs to be reviewed and updated.out of sync

8.

9.

1.
2.
3.

4.

Otherwise, let be the value of the field and check for a component with this cid org.apache.sling.components.DefaultComponent.ID
modified and use it if existingcid
Finally, fail without having found a component to use - this is highly unlikely, though, because the default component is part of the Sling Core
bundle and should always be available.

DefaultComponent

The default component first checks whether the request is sent with parameters and will update the object with the parameters as follows:Content

If the object is a (such as is the case for the) the properties will directly accessed through the }Content java.util.Map DefaultContent Map
API. Otherwise, the object is wrapped inside a to access the fields through the Content org.apache.commons.collections.BeanMap Map
API.
Any properties listed in the parameter are removed. The parameter may contain a comma-separated list of property names _delete _delete
and may occurr multiple times.
All other parameters are used to set property values, where any existing properties will be replaced and all properties not listed in the parameters
remain unmodified. If a parameter occurrs only once a single value property is set, if parameter occurrs multiple times, a multi value property is
set as a list of strings. Note, that any data type conversion may happen only by the as required and thus lead to failure to update a BeanMap
single proeperty.

After the optional update phase, the fields of the object are written back. Again, the object is either accessed as a directly if it is a Content Content Map M
 or packed in a otherwise. The format of the output is deduced from the request URL's extension as returned by the ap BeanMap ComponentRequest.

 method:getExtension()

Extension Format

, html htm HTML, UTF-8 encoded

xml XML, UTF-8 encoded

txt Plain text, UTF-8 encoded

properties Java Properties file format suitable for a normal properties
file

json JSON, UTF-8 encoded

Default Script

The easiest way to develop and deploy a component is to create a scripted component in the repository by just creating a node of type sling:
 and creating a single JSP script at below the component node. After that you can refer to that component by the scriptedComponent jsp/start.jsp

path of the component node and get the script called.start.jsp

For more more elaborate script selection you may of course create more scripts and refer to them below the node of the component sling:scripts
node.

Rapid Development Primer

To summarize, for rapid development you will have to execute the following steps:

Create a node, for example at sling:ScriptedComponent /some/sample/component
Create a JSP script file at below that node; that would be in the examplejsp/start.jsp /some/sample/component/jsp/start.jsp
Create one or more nodes of any type, for example , which have a single value string property named nt:unstructured sling:componentId
referring to the component via its path
Request the node by typing its path in your browser's address field

	Default Mapping and Rendering (OBSOLETE)

