
Book Getting Started
Getting Started with Apache Camel

The (EIP) bookEnterprise Integration Patterns

The purpose of a "patterns" book is not to advocate new techniques that the authors have invented, but rather to document existing best practices within a
particular field. By doing this, the authors of a patterns book hope to spread knowledge of best practices and promote a vocabulary for discussing
architectural designs.
One of the most famous patterns books is by Erich Gamma, Richard Helm, Ralph Design Patterns: Elements of Reusable Object-oriented Software
Johnson and John Vlissides, commonly known as the book. Since the publication of , many other pattern books, of "Gang of Four" (GoF) Design Patterns
varying quality, have been written. One famous patterns book is called Enterprise Integration Patterns: Designing, Building, and Deploying Messaging

 by Gregor Hohpe and Bobby Woolf. It is common for people to refer to this book by its initials . As the subtitle of EIP suggests, the book Solutions EIP
focuses on design patterns for asynchronous messaging systems. The book discusses 65 patterns. Each pattern is given a textual name and most are
also given a graphical symbol, intended to be used in architectural diagrams.

The Camel project

Camel () is an open-source, Java-based project that helps the user implement many of the design patterns in the EIP book. http://camel.apache.org
Because Camel implements many of the design patterns in the EIP book, it would be a good idea for people who work with Camel to have the EIP book as
a reference.

Online documentation for Camel

The documentation is all under the Documentation category on the right-side menu of the Camel website (also available in . PDF form Camel-related books
are also available, in particular the book, presently serving as the Camel bible--it has a , which is highly Camel in Action free Chapter One (pdf)
recommended to read to get more familiar with Camel.

A useful tip for navigating the online documentation

The breadcrumbs at the top of the online Camel documentation can help you navigate between parent and child subsections.
For example, If you are on the "Languages" documentation page then the left-hand side of the reddish bar contains the following links.

Apache Camel > Documentation > Architecture > Languages

As you might expect, clicking on "Apache Camel" takes you back to the home page of the Apache Camel project, and clicking on "Documentation" takes
you to the main documentation page. You can interpret the "Architecture" and "Languages" buttons as indicating you are in the "Languages" section of the
"Architecture" chapter. Adding browser bookmarks to pages that you frequently reference can also save time.

Online Javadoc documentation

The Apache Camel website provides . It is important to note that the Javadoc documentation is spread over several Javadoc documentation independent
Javadoc hierarchies rather than being all contained in a single Javadoc hierarchy. In particular, there is one Javadoc hierarchy for the APIs of Camel, core
and a separate Javadoc hierarchy for each component technology supported by Camel. For example, if you will be using Camel with ActiveMQ and FTP
then you need to look at the Javadoc hierarchies for the and .core API Spring API

Concepts and terminology fundamental to Camel

In this section some of the concepts and terminology that are fundamental to Camel are explained. This section is not meant as a complete Camel tutorial,
but as a first step in that direction.

Endpoint

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://en.wikipedia.org/wiki/Design_Patterns
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://camel.apache.org
http://camel.apache.org/manual.html
https://cwiki.apache.org/confluence/display/CAMEL/Books
http://manning.com/ibsen
http://www.manning.com/ibsen/chapter1sample.pdf
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://camel.apache.org/maven/current/camel-spring/apidocs/index.html

1.
2.
3.
4.

5.

The term is often used when talking about inter-process communication. For example, in client-server communication, the client is one endpoint endpoint
and the server is the other endpoint. Depending on the context, an endpoint might refer to an , such as a host:port pair for TCP-based address
communication, or it might refer to a that is contactable at that address. For example, if somebody uses "www.example.com:80" as an software entity
example of an endpoint, they might be referring to the actual port at that host name (that is, an address), or they might be referring to the web server (that
is, software contactable at that address). Often, the distinction between the address and software contactable at that address is not an important one.
Some middleware technologies make it possible for several software entities to be contactable at the same physical address. For example, CORBA is an
object-oriented, remote-procedure-call (RPC) middleware standard. If a CORBA server process contains several objects then a client can communicate
with any of these objects at the same address (host:port), but a client communicates with a particular object via that object's address physical logical
(called an in CORBA terminology), which consists of the physical address (host:port) plus an id that uniquely identifies the object within its server IOR
process. (An IOR contains some additional information that is not relevant to this present discussion.) When talking about CORBA, some people may use
the term "endpoint" to refer to a CORBA server's , while other people may use the term to refer to the of a single CORBA physical address logical address
object, and other people still might use the term to refer to any of the following:

The physical address (host:port) of the CORBA server process
The logical address (host:port plus id) of a CORBA object.
The CORBA server process (a relatively heavyweight software entity)
A CORBA object (a lightweight software entity)

Because of this, you can see that the term is ambiguous in at least two ways. First, it is ambiguous because it might refer to an address or to a endpoint
software entity contactable at that address. Second, it is ambiguous in the of what it refers to: a heavyweight versus lightweight software entity, granularity
or physical address versus logical address. It is useful to understand that different people use the term in slightly different (and hence ambiguous) endpoint
ways because Camel's usage of this term might be different to whatever meaning you had previously associated with the term.
Camel provides out-of-the-box support for endpoints implemented with many different communication technologies. Here are some examples of the Camel-
supported endpoint technologies.

A JMS queue.
A web service.
A file. A file may sound like an unlikely type of endpoint, until you realize that in some systems one application might write information to a file
and, later, another application might read that file.
An FTP server.
An email address. A client can send a message to an email address, and a server can read an incoming message from a mail server.
A POJO (plain old Java object).

In a Camel-based application, you create (Camel wrappers around) some endpoints and connect these endpoints with , which I will discuss later in routes S
. Camel defines a Java interface called . Each Camel-supported endpoint has a class that ection 4.8 ("Routes, RouteBuilders and Java DSL") Endpoint

implements this interface. As I discussed in , Camel provides a separate Javadoc hierarchy for Endpoint Section 3.3 ("Online Javadoc documentation")
each communications technology supported by Camel. Because of this, you will find documentation on, say, the class in the JmsEndpoint JMS Javadoc

, while documentation for, say, the class is in the .hierarchy FtpEndpoint FTP Javadoc hierarchy

CamelContext

A object represents the Camel runtime system. You typically have one object in an application. A typical application CamelContext CamelContext
executes the following steps.

Create a object.CamelContext
Add endpoints – and possibly Components, which are discussed in – to the object.Section 4.5 ("Components") CamelContext
Add routes to the object to connect the endpoints.CamelContext
Invoke the operation on the object. This starts Camel-internal threads that are used to process the sending, receiving start() CamelContext
and processing of messages in the endpoints.
Eventually invoke the operation on the object. Doing this gracefully stops all the endpoints and Camel-internal threads.stop() CamelContext

Note that the operation does not block indefinitely. Rather, it starts threads internal to each and and CamelContext.start() Component Endpoint
then returns. Conversely, waits for all the threads internal to each and to terminate and then start() CamelContext.stop() Endpoint Component s

 returns.top()
If you neglect to call in your application then messages will not be processed because internal threads will not have been CamelContext.start()
created.
If you neglect to call before terminating your application then the application may terminate in an inconsistent state. If you CamelContext.stop()
neglect to call in a JUnit test then the test may fail due to messages not having had a chance to be fully processed.CamelContext.stop()

CamelTemplate

Camel used to have a class called , but this was renamed to be to be similar to a naming convention used in some other CamelClient CamelTemplate
open-source projects, such as the and classes in .TransactionTemplate JmsTemplate Spring
The class is a thin wrapper around the class. It has methods that send a or – both discussed in CamelTemplate CamelContext Message Exchange Se

) – to an – discussed in . This provides a way to enter messages into source ction 4.6 ("Message and Exchange") Endpoint Section 4.1 ("Endpoint")
endpoints, so that the messages will move along routes – discussed in – to destination endpoints.Section 4.8 ("Routes, RouteBuilders and Java DSL")

The Meaning of URL, URI, URN and IRI

http://camel.apache.org/maven/current/camel-jms/apidocs/
http://camel.apache.org/maven/current/camel-jms/apidocs/
http://camel.apache.org/maven/current/camel-ftp/apidocs/
http://www.springframework.org/

Some Camel methods take a parameter that is a string. Many people know that a URI is "something like a URL" but do not properly understand the URI
relationship between URI and URL, or indeed its relationship with other acronyms such as IRI and URN.
Most people are familiar with (uniform resource locators), such as "http://...", "ftp://...", "mailto:...". Put simply, a URL specifies the of a URLs location
resource.
A (uniform resource identifier) is a URL a URN. So, to fully understand what URI means, you need to first understand what is a URN.URI or

 is an acronym for . There are may "unique identifier" schemes in the world, for example, ISBNs (globally unique for books), URN uniform resource name
social security numbers (unique within a country), customer numbers (unique within a company's customers database) and telephone numbers. Each
"unique identifier" scheme has its own notation. A URN is a wrapper for different "unique identifier" schemes. The syntax of a URN is "urn:<scheme-name>:
<unique-identifier>". A URN uniquely identifies a , such as a book, person or piece of equipment. By itself, a URN does not specify the of resource location
the resource. Instead, it is assumed that a provides a mapping from a resource's URN to its location. The URN specification does not state what registry
form a registry takes, but it might be a database, a server application, a wall chart or anything else that is convenient. Some hypothetical examples of
URNs are "urn:employee:08765245", "urn:customer:uk:3458:hul8" and "urn:foo:0000-0000-9E59-0000-5E-2". The <scheme-name> ("employee",
"customer" and "foo" in these examples) part of a URN implicitly defines how to parse and interpret the <unique-identifier> that follows it. An arbitrary URN
is meaningless unless: (1) you know the semantics implied by the <scheme-name>, and (2) you have access to the registry appropriate for the <scheme-
name>. A registry does not have to be public or globally accessible. For example, "urn:employee:08765245" might be meaningful only within a specific
company.
To date, URNs are not (yet) as popular as URLs. For this reason, URI is widely misused as a synonym for URL.

 is an acronym for . An IRI is simply an internationalized version of a URI. In particular, a URI can contain letters and IRI internationalized resource identifier
digits in the US-ASCII character set, while a IRI can contain those same letters and digits, and European accented characters, Greek letters, Chinese also
ideograms and so on.

Components

Component is confusing terminology; would have been more appropriate because a is a factory for creating EndpointFactory Component Endpoint
instances. For example, if a Camel-based application uses several JMS queues then the application will create one instance of the class JmsComponent
(which implements the interface), and then the application invokes the operation on this object several Component createEndpoint() JmsComponent
times. Each invocation of creates an instance of the class (which implements the JmsComponent.createEndpoint() JmsEndpoint Endpoint
interface). Actually, application-level code does not invoke directly. Instead, application-level code normally invokes Component.createEndpoint() Ca

; internally, the object finds the desired object (as I will discuss shortly) and then invokes melContext.getEndpoint() CamelContext Component cre
 on it.ateEndpoint()

Consider the following code.

myCamelContext.getEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword");

The parameter to is a URI. The URI (that is, the part before ":") specifies the name of a component. Internally, the getEndpoint() prefix CamelContext
object maintains a mapping from names of components to objects. For the URI given in the above example, the object would Component CamelContext
probably map the prefix to an instance of the class. Then the object invokes pop3 MailComponent CamelContext createEndpoint("pop3://john.

 on that object. The operation splits the URI into smith@mailserv.example.com?password=myPassword") MailComponent createEndpoint()
its component parts and uses these parts to create and configure an object.Endpoint
In the previous paragraph, I mentioned that a object maintains a mapping from component names to objects. This raises the CamelContext Component
question of how this map is populated with named objects. There are two ways of populating the map. The first way is for application-level Component
code to invoke . The example below shows a single CamelContext.addComponent(String componentName, Component component) MailComp

 object being registered in the map under 3 different names.onent

Component mailComponent = new org.apache.camel.component.mail.MailComponent();
myCamelContext.addComponent("pop3", mailComponent);
myCamelContext.addComponent("imap", mailComponent);
myCamelContext.addComponent("smtp", mailComponent);

The second (and preferred) way to populate the map of named objects in the object is to let the object Component CamelContext CamelContext
perform lazy initialization. This approach relies on developers following a convention when they write a class that implements the interface. I Component
illustrate the convention by an example. Let's assume you write a class called and you want Camel to com.example.myproject.FooComponent
automatically recognize this by the name "foo". To do this, you have to write a properties file called "META-INF/services/org/apache/camel/component/foo"
(without a ".properties" file extension) that has a single entry in it called , the value of which is the fully-scoped name of your class. This is shown class
below.

META-INF/services/org/apache/camel/component/foo

class=com.example.myproject.FooComponent

If you want Camel to also recognize the class by the name "bar" then you write another properties file in the same directory called "bar" that has the same
contents. Once you have written the properties file(s), you create a jar file that contains the class and the com.example.myproject.FooComponent
properties file(s), and you add this jar file to your CLASSPATH. Then, when application-level code invokes on a createEndpoint("foo:...") CamelC

 object, Camel will find the "foo"" properties file on the CLASSPATH, get the value of the property from that properties file, and use ontext class
reflection APIs to create an instance of the specified class.
As I said in , Camel provides out-of-the-box support for numerous communication technologies. The out-of-the-box support Section 4.1 ("Endpoint")
consists of classes that implement the interface plus properties files that enable a object to populate its map of named Component CamelContext Compo

 objects.nent
Earlier in this section I gave the following example of calling .CamelContext.getEndpoint()

myCamelContext.getEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword");

When I originally gave that example, I said that the parameter to was a URI. I said that because the online Camel documentation and getEndpoint()
the Camel source code both claim the parameter is a URI. In reality, the parameter is restricted to being a URL. This is because when Camel extracts the
component name from the parameter, it looks for the first ":", which is a simplistic algorithm. To understand why, recall from Section 4.4 ("The Meaning of

 that a URI can be a URL a URN. Now consider the following calls to .URL, URI, URN and IRI") or getEndpoint

myCamelContext.getEndpoint("pop3:...");
myCamelContext.getEndpoint("jms:...");
myCamelContext.getEndpoint("urn:foo:...");
myCamelContext.getEndpoint("urn:bar:...");

Camel identifies the components in the above example as "pop3", "jms", "urn" and "urn". It would be more useful if the latter components were identified as
"urn:foo" and "urn:bar" or, alternatively, as "foo" and "bar" (that is, by skipping over the "urn:" prefix). So, in practice you must identify an endpoint with a
URL (a string of the form "<scheme>:...") rather than with a URN (a string of the form "urn:<scheme>:..."). This lack of proper support for URNs means the
you should consider the parameter to as being a URL rather than (as claimed) a URI.getEndpoint()

Message and Exchange

The interface provides an abstraction for a single message, such as a request, reply or exception message.Message
There are concrete classes that implement the interface for each Camel-supported communications technology. For example, the Message JmsMessage
class provides a JMS-specific implementation of the interface. The public API of the interface provides get- and set-style methods to Message Message
access the , and individual fields of a messge.message id body header
The interface provides an abstraction for an exchange of messages, that is, a request message and its corresponding reply or exception Exchange
message. In Camel terminology, the request, reply and exception messages are called , and messages.in out fault
There are concrete classes that implement the interface for each Camel-supported communications technology. For example, the Exchange JmsExchange
class provides a JMS-specific implementation of the interface. The public API of the interface is quite limited. This is intentional, and Exchange Exchange
it is expected that each class that implements this interface will provide its own technology-specific operations.
Application-level programmers rarely access the interface (or classes that implement it) directly. However, many classes in Camel are generic Exchange
types that are instantiated on (a class that implements) . Because of this, the interface appears a lot in the generic signatures of Exchange Exchange
classes and methods.

Processor

The interface represents a class that processes a message. The signature of this interface is shown below.Processor

Processor

package org.apache.camel;
public interface Processor {
 void process(Exchange exchange) throws Exception;
}

Notice that the parameter to the method is an rather than a . This provides flexibility. For example, an implementation of process() Exchange Message
this method initially might call to get the input message and process it. If an error occurs during processing then the method can call exchange.getIn()

.exchange.setException()
An application-level developer might implement the interface with a class that executes some business logic. However, there are many Processor
classes in the Camel library that implement the interface in a way that provides support for a design pattern in the . For example, Processor EIP book Cho

 implements the message router pattern, that is, it uses a cascading if-then-else statement to route a message from an input queue to one iceProcessor
of several output queues. Another example is the class which discards messages that do not satisfy a stated (that is, FilterProcessor predicate
condition).

Routes, RouteBuilders and Java DSL

A is the step-by-step movement of a from an input queue, through arbitrary types of decision making (such as filters and routers) to a route Message
destination queue (if any). Camel provides two ways for an application developer to specify routes. One way is to specify route information in an XML file.
A discussion of that approach is outside the scope of this document. The other way is through what Camel calls a Java (domain-specific language).DSL

Introduction to Java DSL

For many people, the term "domain-specific language" implies a compiler or interpreter that can process an input file containing keywords and syntax
specific to a particular domain. This is the approach taken by Camel. Camel documentation consistently uses the term "Java DSL" instead of "DSL", not
but this does not entirely avoid potential confusion. The Camel "Java DSL" is a class library that can be used in a way that looks almost like a DSL, except
that it has a bit of Java syntactic baggage. You can see this in the example below. Comments afterwards explain some of the constructs used in the
example.

Example of Camel's "Java DSL"

RouteBuilder builder = new RouteBuilder() {
 public void configure() {
 from("queue:a").filter(header("foo").isEqualTo("bar")).to("queue:b");
 from("queue:c").choice()
 .when(header("foo").isEqualTo("bar")).to("queue:d")
 .when(header("foo").isEqualTo("cheese")).to("queue:e")
 .otherwise().to("queue:f");
 }
};
CamelContext myCamelContext = new DefaultCamelContext();
myCamelContext.addRoutes(builder);

The first line in the above example creates an object which is an instance of an anonymous subclass of with the specified RouteBuilder configure()
method.
The method invokes – so the object knows CamelContext.addRoutes(RouterBuilder builder) builder.setContext(this) RouteBuilder
which object it is associated with – and then invokes . The body of invokes methods such as CamelContext builder.configure() configure() fro

, , , , , and .m() filter() choice() when() isEqualTo() otherwise() to()
The method invokes on the associated with the object to RouteBuilder.from(String uri) getEndpoint(uri) CamelContext RouteBuilder
get the specified and then puts a "wrapper" around this . The Endpoint FromBuilder Endpoint FromBuilder.filter(Predicate predicate)
method creates a object for the (that is, condition) object built from the FilterProcessor Predicate header("foo").isEqualTo("bar")
expression. In this way, these operations incrementally build up a object (with a wrapper around it) and add it to the Route RouteBuilder CamelContext
object associated with the .RouteBuilder

Critique of Java DSL

The online Camel documentation compares Java DSL favourably against the alternative of configuring routes and endpoints in a XML-based Spring
configuration file. In particular, Java DSL is less verbose than its XML counterpart. In addition, many integrated development environments (IDEs) provide
an auto-completion feature in their editors. This auto-completion feature works with Java DSL, thereby making it easier for developers to write Java DSL.
However, there is another option that the Camel documentation neglects to consider: that of writing a parser that can process DSL stored in, say, an
external file. Currently, Camel does not provide such a DSL parser, and I do not know if it is on the "to do" list of the Camel maintainers. I think that a DSL
parser would offer a significant benefit over the current Java DSL. In particular, the DSL would have a syntactic definition that could be expressed in a
relatively short BNF form. The effort required by a Camel user to learn how to use DSL by reading this BNF would almost certainly be significantly less
than the effort currently required to study the API of the classes.RouterBuilder

Continue Learning about Camel

Return to the main page for additional introductory reference information.Getting Started

https://cwiki.apache.org/confluence/display/CAMEL/Getting+Started

	Book Getting Started

