
Copyright © 2015 The Apache Software Foundation, Licensed under the Apache License, Version 2.0 1

4.1.x Composite Applications
Stratos is able to start up or terminate instances (single tenant) according to the demand. In Stratos terms this is
referred to as subscription and unsubscription. Subscription will bring up a cluster, with the minimum number of
instances, and unsubscription will terminate the instances. Prior to subscription, it is required to define and deploy
the relevant cartridge in order to communicate to Stratos the details about the service that you will be providing, the
IaaS that will be used, etc.

In previous Stratos releases, each cluster corresponding to a subscription was isolated and there was no
connection between multiple clusters. However, in a real world use cases, there are requirements to have multiple
clusters in a grouped manner, where one or more clusters can depend on some other clusters. Therefore, in this
release composite applications support has been introduced and cartridge subscription has been made obsolete.

Composite application support, which is also referred to as cartridge grouping, provides the ability to deploy an
application that has different service runtimes with their relationship and dependencies. Further, each of the service
runtimes in the application can scale independently or jointly with the dependent services. Thereby, users can
defined applications with its required service runtimes, deployment and auto scaling policies, artifact repositories
and all dependencies in simple structured JSON file that Stratos can understand and provision all the required
runtimes in a defined manner.

The various terminologies used with composite application support, which are groups, dependency, startup order,
group scaling, dependence scaling, termination behaviors and metadata service, have been explained in-depth in
the following sub-sections.

Cartridge groups
Startup order
Termination behavior
Dependent scaling
Group scaling
Application JSON
Application deployment policies
Metadata Service

Metadata client
How it works?

Cartridge groups

A cartridge group, is a metadata that you can define by grouping several cartridges together. Composite
applications in Stratos, support nested groups within a group as inter-dependencies among group members.
Cartridge groups define the relationship among a set of groups and a set of cartridges. The relationship among the
children of a group can be start up order, termination behavior and any scalable dependencies. Writing a group
definition provides the ability to re-use the same frequently used group as needed in different composite
applications. See diagram - 01 for a sample group.

 Composite Application = Information to Create Multiple Clusters + Dependency Details

Copyright © 2015 The Apache Software Foundation, Licensed under the Apache License, Version 2.0 2

The following is the structure of a basic service group JSON definition:

name
groupscartridges

name
groups
cartridges
groupScalingEnabled
dependencies

startupOrders
scalingDependants
terminationBehaviour

groupScalingEnabled
dependencies

startupOrders
scalingDependants
terminationBehaviour

Startup order

Related Links
For information on all the properties that can be used in a cartridge group definition, see the Cartridge Group

.Resource Definition

https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Cartridge+Group+Resource+Definition
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Cartridge+Group+Resource+Definition

Copyright © 2015 The Apache Software Foundation, Licensed under the Apache License, Version 2.0 3

Within a group or an application you can define the startup order that needs to be maintained between two or more
dependent cartridges or groups.

Example: Based on diagram-01:

Group G1 has two members, cartridge C1 and group G2, and the startup order among these two members
are G2->C1, which means that group G2 has to wait until cartridge C1 is created first and comes into active
mode.
In group G2, the startup order is C2->C3, which means cartridge C2 has to wait until cartridge C3 is available.

Termination behavior

Termination behavior allows you to define the action that needs to be taken if any dependency runtime failure
occurs in an application. Failures are identified as not satisfying the required minimum member count. The
following are the three termination behaviors that are supported:

Termination all
Termination dependents
Termination none

Example: Based on diagram-01:

As the termination behavior for group G2 is terminate all, if either cartridge C2 or C3 failures, all members will
be terminated and they will be re-created with the defined startup order.
As the termination behavior is terminate dependents in group G1, if cartridge C1 fails, group G2 will be
terminated, because group G2 is dependent on C1 in the startup order. However, if group G2 fails, cartridge
C1 will not be terminated, because it is not dependent on G2.

Dependent scaling

When dependent scaling is defined among members (cartridge or a group), and scaling (scaling up or down) is
taking place for any of the members, all other dependent members will also scale in order to maintain the defined
ratio.

Copyright © 2015 The Apache Software Foundation, Licensed under the Apache License, Version 2.0 4

Example: Based on iterations 1 to 4 in diagram-02.

Group G2, cartridge C2 and cartridge C3 have been defined in the dependent scaling list. Four auto-scaling
iterations are considered in this example to illustrate how scaling up and scaling down takes place with dependent
scaling. Note that cartridge C2 and C3 have two different auto-scaling policies, one is based on the CPU utilization
and other is based on memory consumption. Furthermore, in cartridge C2 the number of minimum instances in the
cluster is 2 and the maximum number of instances are 6; while. in cartridge C3 the minimum number of instances is
1 and the maximum number of instances are 3.

Iteration 1 Cartridge C2 and C3 are both below the threshold values. Therefore, the minimum instance :
count that is defined, which C2=2 and C3=1, is maintained.
Iteration 2 In cartridge C3 the predicted memory consumption is 85%, which exceeds the threshold. The:
following equation needs to be used to calculate the required C3 cartridge instances that are required to
handle this predicted value.

Copyright © 2015 The Apache Software Foundation, Licensed under the Apache License, Version 2.0 5

The required C3 instances = 85/80 * 1 = 1.06. When dealing with instances, the minimum required instance
count is one. Therefore, in situations like this we need to round off the required instance count to the nearest
instance, which means that we need 2 C3 instances to handle the predicted load.

As C2 depends on C3 with the a 2:1 (C2 minimum instances : C3 minimum instances) ratio and the C3's new
instance count is 2, Stratos will create 2 new C2 instances, to make a total of 4 C2 instances in order to
maintain the defined ratio. Furthermore, note that at the time C2 was under the threshold value, but priority is
always given to dependent scaling decisions.
Iteration 3: In this case, C2's predicted CPU consumption is 150%. When the above instances count formula
is applied, the required instances count for C2 is 150/60 * 2 = 5. Since C3 is dependent on C2 with a ratio 2:
1, C3 will increase its instance count to 3.

Iteration 4: In this scenario, C3 is under the defined threshold, but C2 has exceeded the threshold. When
the above instances count formula is applied, the required instances count for C2 is 90/60 * 2 = 3. This
means that we need to scale down C2's instances to 3 instances. Based on the dependent ratio, C3 should
be in scaled down to 2 instances. Since C3 is below the auto-scaling threshold scaling down takes place.

Group scaling
If group scaling is defined as true within a group definition, this means that the group itself can be scaled in a situation when a member reaches its
maximum instance limit and also based on the dependancy.
Example: Based on iteration 5 in diagram - 02.

Iteration 5 In this scenario, C3's predicted value is 250. When the above instances count formula is :
applied the required instances count for C3 is 250/80 * 1 = 3.125, which means 4 C3 instances are needed.
However, as C3's maximum number of instances count is 3, it is not possible to scale more than 3 C3
instances within the G2 group. In this situation, as group scaling is enabled, Stratos will create a new G2
group instance, which has 2 instances of C2 and one instance of C3. As a result, there will be two G2 group
instances G2-1 and G2-2. This has been illustrated further in the diagram below:

Required instances count formula

Copyright © 2015 The Apache Software Foundation, Licensed under the Apache License, Version 2.0 6

Application JSON

An application JSON is a structured JSON, that you can define the runtime of your application by using, cartridges,
cartridge groups, dependencies, artifact repositories and auto-scaling policies. The application JSON can be
converted into an application template, that can be reused to deploy the same application with different deployment
patterns. The deployment policy is the way to define the deployment pattern (e.g., high availability, disaster
recovery, cloud bursting, multi-cloud with 4 nines or 5 nines etc.).

The following is the structure of a basic application JSON definition:

applicationId
alias
components

groups
alias
min/max
group scaling enable/disable
cartridges

min/max
subscribable info

groups
alias
min/max
group scaling enable/disable
cartridges

min/max
subscribable info

cartridges
min/max
subscribable info

dependencies
startup order
termination behavior
dependent scaling

Application deployment policies

In Stratos, deployment policies are used to define the deployment patterns that need to be used. In grouping,
deployment policies are supported at the group level or at the cluster level. Global deployment policies provide a
single place to define the deployment policies that correspond to the children (nested groups). Thereby, each
application will have a single deployment policy, which defines all the children deployment policies as well. There
are many advantages of defining global deployment policies, which are as follows:

The same applications can be deployed in high availability (HA) or in a burst manner using different
deployment policies.

This enabled the actual VMs to be started after deploying the deployment policy rather than starting it
once the application has been deployed.
The deployment policy will always be coupled with an application.

It is not needed to define multiple deployment policies at the cluster level or group level.
The partition definition details can also be defined in the deployment policy itself.

The following is the basic structure of an application deployment policy:

id

applicationPolicy[1..1]
appId
networkPartition[1..n]

id

Copyright © 2015 The Apache Software Foundation, Licensed under the Apache License, Version 2.0 7

activeByDefault
partition[1..n]

id
provider
properties[1..n]

childPolicies[1..n]
childId (Group alias or cartridge alias)
networkPartition[1..n]

id
min
partition[1..n]

id
max

Descriptions on the terminology used in deployment policy definitions are as follows:

Network Partition
A network partition is a logical partition that you can define, in a network bound manner. Thereby, Stratos will
map the network partitions with the IaaS regions. The abbreviation for a network partition is as follows: NP
Example:
NP1: EC2-US-WEST
NP2: EC2-US-EAST

 NP3: OPENSTACK-NY-RegionOne

Partition
Partitions are also an individual or a logical group within a network partition in a fine grained manner. The
abbreviation for a partition is as follows: P
Example:
NP1:P1 -> US-WEST -> us-west-1 (N. California)

 NP1:P2 -> US-WEST -> us-west-2 (Oregon)

applicationPolicy
The application policy will have the definition of all the network partitions and partitions that will be used
throughout the application.

activeByDefault
If this property is true, it means that the network partition will be used by default. However, if this property is
false, it means that the network partition can be used when all the resources are exhausted (in bursting).
childPolicies
Each child policy will refer the network partition and the relevant partition from the applicationPolicy to define
their own deployment pattern. Please note that, if you define a childPolicy by referring to group, the
underlying cluster (cartridge runtime)/group will inherit the same policy.

max
Maximum no of instances that can be handled by a partition.
In terms of a group: Maximum group instances that can be in a partition.
In terms of a cluster: Maximum number of members that can be maintained for a cluster instance in a
partition.
algorithm
Stratos support the following two algorithms: round robin and one after another. These algorithms can be
used depending on the required scenarios.
Example: Based on diagram-04, which has two child policies applied in the cartridge runtime level.

Copyright © 2015 The Apache Software Foundation, Licensed under the Apache License, Version 2.0 8

Child policy : sample1
Partitions : P1, P2
P1 Max : 4
P2 Max : 3
Algorithm : Round robin

Child policy : sample2
Partitions : P3, P4
P3 Max : 2
P4 Max : 3

Algorithm : One after another

In diagram-04 you can see that C2 has applied the sample1 child policy and all C2 instances are created in
P1 and P2 in a round robin manner. C3 has applied the sample2 child policy and as the defined algorithm is
one after another, all C3 instances are created in P3 until P3 reaches its maximum instance count, which is
2. Thereafter, C3 instances are created in P4.
Iteration 1 Cartridges C2 and C3 are both below the threshold values. Therefore, the minimum instance :
count will be maintained. As C2 is based on the round robin algorithm and because its minimum instance
count is 2, one instance will be created in P1 and another instance will be created in P2. As C3 is based on
the one after the other algorithm and because its minimum instance count is 1, the instance will be created in
P3.
Iteration 2 In cartridge C3 the predicted memory consumption is 85%, which exceeds the threshold. When:
the above instances count formula is applied, the required instances count for C3 is 85/80 * 1 = 1.06.
Therefore, P3 will increase its count to 2. As C2 is dependent on C3 with a 2:1 (C2 minimum instances : C3
minimum instances) ratio, C2 will need to increase its instance count to 4. As C2 is based on the round robin
algorithm, the instance count will be increased by 1 in P1 and P2 .

Copyright © 2015 The Apache Software Foundation, Licensed under the Apache License, Version 2.0 9

1.

Iteration 3: In this case, C2's predicted CPU consumption is 150%. When the above instances count formula
is applied, the required instances count for C2 is 150/60 * 2 = 5. As C2 is based on the round robin algorithm
and because the instance count was last adjusted in the P2 partition, the instance count in P1 will be
increased by 1. Based on the dependent ratio, the instance count in C3 needs to be increased to 3. As P3
has reached its maximum instance count limit, one instance will be created in P4.

Iteration 4: In this scenario, C3 is under the defined threshold. However, C2 has exceeded the threshold.
When the above instances count formula is applied, the required instances count for C2 is 90/60 * 2 = 3. This
means that we need to scale down C2's instances to 3 instances. As C2 is based on the round robin
algorithm and because the instance count was last adjusted in the P1 partition, the instance count in P2
needs to be scaled down to 1 instance. Based on the dependent ratio, C3 should be in scaled down to 2
instances. As C3 is based on one after the other algorithm, the instance in P4 will be terminated.

Metadata Service
As a composite application has a collection of cartridges, there will be multiple cartridge instances that will boot up. Thereby, the information needs to be
shared among the cartridges within a composite application. The metadata service is a web app in Stratos that is responsible for data sharing among the
runtime services that may require a composite application. The metadata service acts as a central placeholder for all cartridge instance related metadata.
Thereby, cartridges can publish metadata to the metadata service, so that other interested parties can retrieve the data when required.
The metadata are stored as key value pairs in the metadata service. Multiple values may be associated with one key; however, each key needs to have at
least one corresponding value. When you create an application, Stratos Manager will create a JW (JSON web token) OAuth token that includes the
application ID as a claim. This token will be passed into the cartridge runtime instance or container as a payload. The cartridge agent uses this token to
authenticate and authorize against the application whenever data is retrieved from or published to a metadata service.

Many REST APIs have been exposed to add, fetch and delete metadata in the metadata service. Therefore, when
there are multiple cartridges all the instances will invoke REST APIs to publish their details to the metadata service.
When information sharing is required between the cartridge instances in a composite application, the respective
cartridge instance will invoke a REST API to retrieve the required metadata.

Metadata client

The metadata client is used when third party Stratos components (e.g., Cloud Controller, Auto-scaler, Stratos
Manager) need to communicate with the metadata service. However, other clients (e.g., Cartridge Agent) that have
the JW OAuth token can communicate with metadata service without the use of the metadata client. The metadata
client is a Java API that wraps the client to transform the requests and responses. Therefore, third party Stratos
components will be able to use the metadata client to add, fetch and delete metadata in the metadata service. For
example, the metadata client will be used when the Git repository URL, which is in the Cloud Controller, needs to
be added to the metadata table.

How it works?

The following flow explains how to get a composite application working with Stratos:

Add a network partition.

Related Links
See to learn how to work with the metadata REST API.Metadata REST API Reference
See to see how the metadata service works.Sample 1
See the to learn more on the metadata service design and whats under hangout on the metadata service
the hood.

For more information on how to add a network partition via REST API, CLI or UI, see Working with
 Network Partitions , and see to learn about all the properties thatNetwork Partition Resource Definition

can be defined in a network partition.

https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Metadata+API+Reference
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Sample+1%3A+Connecting+an+Application+to+a+Database
https://www.youtube.com/watch?v=y1yyaZhNCSY
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Network+Partitions
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Network+Partitions
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Network+Partition+Resource+Definition

Copyright © 2015 The Apache Software Foundation, Licensed under the Apache License, Version 2.0 10

2.

3.

4.

5.

6.

7.

8.

Add a deployment policy.

Add an auto-scaling policy.

Add a cartridge.

Add a cartridge group.

Add the application.

Add the application policy.

Deploy the application.

After the composite application is deployed, all the clusters that belong to the composite application are brought up
by Stratos, based on the dependency information provided in the cartridge group definition and in the application
definition.

For more information on how to add a deployment policy via REST API, CLI or UI, see Working with
 Deployment Policies , and see to learn about all the propertiesDeployment Policy Resource Definition

that can be defined in a deployment policy.

For more information on how to add an auto-scaling policy via REST API, CLI or UI, see Working with
 Auto-scaling Policies , and see to learn about all the propertiesAuto-scaling Policy Resource Definition

that can be defined in an auto-scaling policy.

For more information on how to add a cartridge via REST API, CLI or UI, see Working with Cartridges ,
and see to learn about all the properties that can be defined in a cartridge.Cartridge Resource Definition

For more information on how to add a cartridge group via REST API, CLI or UI, see Working with
 Cartridge Groups , and see C artridge Group Resource Definition to learn about all the properties that

can be defined in a cartridge group.

For more information on how to add a application via REST API, CLI or UI, see ,Working with Applications
and see to learn about all the properties that can be defined in anApplication Resource Definition
application.

For more information on how to add a application policies via REST API, CLI or UI, see Working with
 Application Policies , and see to learn about all the properties thatApplication Policy Resource Definition

can be defined in an application policy.

For more information on how to deploy an application via REST API, CLI or UI, see Working with
.Application Deployment

https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Deployment+Policies
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Deployment+Policies
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Deployment+Policy+Resource+Definition
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Auto-scaling+Policies
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Auto-scaling+Policies
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Auto-scaling+Policy+Resource+Definition
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Cartridges
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Cartridge+Resource+Definition
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Cartridge+Groups
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Cartridge+Groups
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Cartridge+Group+Resource+Definition
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Applications
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Application+Resource+Definition
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Application+Policies
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Application+Policies
https://cwiki.apache.org/confluence/display/STRATOS/Stratos+4.1.x
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Application+Deployment
https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Working+with+Application+Deployment

	4.1.x Composite Applications

