Building, Configuring & Installing Apache Atlas

Building Atlas

git clone https://git-w p-us.apache. org/repos/asf/atlas.git atlas
cd atlas

If you're using Atlas at version 0.8.x or below

export MAVEN OPTS="-Xmx1024m - XX: MaxPer nSi ze=256m"' && nvn cl ean install

If you're on levels above this, including master as of 27 Oct 2017, use:

export MAVEN OPTS="- Xmx1024nf && mvn clean install

as Atlas has now moved to Java8, and the -XX:MaxPermSize is no longer valid with this level

Once the build successfully completes, artifacts can be packaged for deployment.

nmvn cl ean package - Dski pTests -Dski pCheck=true
Tar can be found in atlas/distro/target/apache-atlas-${project.version}-bin.tar.gz
Tar is structured as follows

|- bin
|- atlas_start.py
|- atlas_stop.py
|- atlas_config.py
|- quick_start.py
|- cputil.py
|- conf
|- application.properties
|- client.properties
|- atlas-env.sh
|- log4j.xml
|- solr
|- currency.xml
|- lang
|- stopwords_en.txt
|- protowords.txt
|- schema.xml
|- solrconfig.xml
|- stopwords.txt
|- synonyms.txt
|- docs
|- server
|- webapp
|- atlas.war
|- README
|- NOTICE.txt
|- LICENSE.txt
|- DISCLAIMER.txt
|- CHANGES.txt

Installing & Running Atlas

Installing Atlas

https://git-wip-us.apache.org/repos/asf/incubator-atlas.git

tar -xzvf apache-atlas-${project.version}-bin.tar.gz
* cd atlas-${project.version}

Configuring Atlas

By default config directory used by Atlas is {package dir}/conf. To override this set environment
variable METADATA_CONF to the path of the conf dir.

atlas-env.sh has been added to the Atlas conf. This file can be used to set various environment
variables that you need for you services. In addition you can set any other environment
variables you might need. This file will be sourced by atlas scripts before any commands are
executed. The following environment variables are available to set.

The java implementation to use. If JAVA_HOME is not found we expect java and jar to be in path
#export JAVA_HOME=

any additional java opts you want to set. This will apply to both client and server operations
#export METADATA_OPTS=

any additional java opts that you want to set for client only
#export METADATA_CLIENT_OPTS=

java heap size we want to set for the client. Default is 1024MB
#export METADATA_CLIENT_HEAP=

any additional opts you want to set for atlas service.
#export METADATA_SERVER_OPTS=

java heap size we want to set for the atlas server. Default is 1024MB
#export METADATA_SERVER_HEAP=

What is is considered as atlas home dir. Default is the base locaion of the installed software
#export METADATA_HOME_DIR=

Where log files are stored. Defatult is logs directory under the base install location
#export METADATA_LOG_DIR=

Where pid files are stored. Defatult is logs directory under the base install location
#export METADATA_PID_DIR=

where the atlas titan db data is stored. Defatult is logs/data directory under the base install location
#export METADATA_DATA_DIR=

Where do you want to expand the war file. By Default it is in /server/webapp dir under the base install dir.
#export METADATA_EXPANDED_WEBAPP_DIR=

NOTE for Mac OS users
If you are using a Mac OS, you will need to configure the METADATA_SERVER_OPTS (explained above).

In {package dir}/conf/atlas-env.sh uncomment the following line
#export METADATA_SERVER_OPTS=

and change it to look as below
export METADATA_SERVER_OPTS="-Djava.awt.headless=true -Djava.security.krb5.realm= -Djava.security.krb5.kdc="

Configuring ATLAS application properties

All configuration in Atlas uses java properties style configuration.

Application Properties

The main configuration file is application.properties which is in the conf dir at the deployed location. It consists of the following sections:
Graph Database Configs

Graph persistence engine - BerkeleyDB

Refer link for more details. The example below uses BerkeleyDBJE.

at | as. graph. st or age. backend=ber kel eyj e

http://s3.thinkaurelius.com/docs/titan/0.5.4/titan-config-ref.html

at | as. graph. st orage. di rect or y=dat a/ ber kl ey

Graph persistence engine - Hbase

Basic configuration

at| as. graph. st or age. backend=hbase

#For standal one node , specify | ocal host

#for distributed node, specify zookeeper quorumhere - For nore information refer http://s3.thinkaurelius.conf docs

/titan/current/hbase. htnl #_renote_server_node_2
at | as. graph. st or age. host name=<ZooKeeper Quor un®

Advanced configuration

Refer http://s3.thinkaurelius.com/docs/titan/0.5.4/titan-config-ref.html#_storage_hbase

Graph Search Index - ElasticSearch

This section sets up the graph db - titan - to use an search indexing system. The example configuration below setsup to use an embedded Elastic search
indexing system.

at | as. graph. i ndex. sear ch. backend=el asti csearch

atl as. graph. i ndex. search. directory=datal/ es

atl as. graph. i ndex. search. el asti csearch. client-only=fal se
at | as. graph. i ndex. sear ch. el asti csearch. | ocal - node=true

atl as. graph. i ndex. search. el asti csearch. create. sl eep=2000

Graph Search Index - Solr

For Solr, please refer the "Configuring SOLR as the Indexing Backend for the Graph Repository" section below.

Hive Lineage Configs
The higher layer services like hive lineage, schema, etc. are driven by the type system and this section encodes the specific types for the hive data model.

This models reflects the base super types for Data and Process
atlas.lineage. hive.tabl e.type. nane=Dat aSet atl as. | i neage. hi ve. process. type. nane=Process atl as.|ineage. hi ve.

process. i nputs. name=i nputs atl as.|ineage. hive. process. out puts. nanme=out puts ## Schema atl as.|ineage. hive.tabl e.
schena. query=hi ve_t abl e where nane=?, colums

Security Properties

SSL config

The following property is used to toggle the SSL feature.

atl as. enabl eTLS=f al se

http://s3.thinkaurelius.com/docs/titan/0.5.4/titan-config-ref.html#_storage_hbase

Configuring SOLR as the Indexing Backend for the Graph Repository

By default, Atlas uses Titan as the graph repository and is the only graph repository implementation available currently.
For configuring Titan to work with Solr, please follow the instructions below
* Install solr if not already running. Versions of SOLR supported are 4.8.1 or 5.2.1.

* Start solr in cloud mode.

SolrCloud mode uses a ZooKeeper Service as a highly available, central location for cluster management.

For a small cluster, running with an existing ZooKeeper quorum should be fine. For larger clusters, you would want to run separate multiple ZooKeeper
quorum with atleast 3 servers.

Note: Atlas currently supports solr in "cloud" mode only. "http" mode is not supported. For more information, refer solr documentation - https://cwiki.
apache.org/confluence/display/solr/SolrCloud

* Run the following commands from SOLR_HOME directory to create collections in Solr corresponding to the indexes that Atlas uses
bin/solr create -c vertex_index -d ATLAS_HOME/conf/solr -shards #numShards -replicationFactor #replicationFactor
bin/solr create -c edge_index -d ATLAS_HOME/conf/solr -shards #numShards -replicationFactor #replicationFactor
bin/solr create -c fulltext_index -d ATLAS_HOME/conf/solr -shards #numShards -replicationFactor #replicationFactor
Note: If numShards and replicationFactor are not specified, they default to 1 which suffices if you are trying out solr with ATLAS on a single node instance.
Otherwise specify numShards according to the number of hosts that are in the Solr cluster and the maxShardsPerNode configuration.
The number of shards cannot exceed the total number of Solr nodes in your SolrCloud cluster
* Change ATLAS configuration to point to the Solr instance setup.
Please make sure the following configurations are set to the below values in ATLAS_HOME!//conf/application.properties
atlas.graph.index.search.backend=<'solr' for solr 4.8.1>/<'solr5' for solr 5.2.1>
atlas.graph.index.search.solr.mode=cloud

atlas.graph.index.search.solr.zookeeper-url=<the ZK quorum setup for solr as comma separated value> eg: 10.1.6.4:2181,10.1.6.5:2181

For more information on Titan solr configuration , please refer http://s3.thinkaurelius.com/docs/titan/0.5.4/solr.html

Starting Atlas Server

bin/atlas_start.py [-port <port>]

By default,

* To change the port, use -port option.

* atlas server starts with conf from {package dir}/conf. To override this (to use the same conf

with multiple atlas upgrades), set environment variable METADATA_CONF to the path of conf dir

Stopping Atlas Server
bin/atlas_stop.py

Using Atlas

https://cwiki.apache.org/confluence/display/solr/SolrCloud
https://cwiki.apache.org/confluence/display/solr/SolrCloud
http://s3.thinkaurelius.com/docs/titan/0.5.4/solr.html

* Verify if the server is up and running
curl -v http://localhost:21000/api/atlas/admin/version
{"Version":"v0.1"}

* List the types in the repository
curl -v http://localhost:21000/api/atlas/types
{"results":["Process","Infrastructure”,"DataSet"],"count":3,"requestld":"1867493731@qtp-262860041-0 - 82d43a27-7c34-4573-85d1-a01525705091"}

* List the instances for a given type

curl -v http://localhost:21000/api/atlas/entities?type=hive_table

{"requestld":"788558007 @qtp-44808654-5","list":["cb9b5513-c672-42ch-8477-b8f3e537a162","ec985719-a794-4c98-b98f-0509bd23aac0","48998f81-
f1d3-45a2-989a-223af5cled6e"”,"a54b386e-c759-4651-8779-a099294244c4"}

curl -v http://localhost:21000/api/atlas/entities/list/hive_db
* Search for entities (instances) in the repository

curl -v http://localhost:21000/api/atlas/discovery/search/dsl?query="from hive_table"

Dashboard

Once atlas is started, you can view the status of atlas entities using the Web-based
dashboard. \You can open your browser at the corresponding port to use the web Ul.

http://localhost:21000/api/atlas/admin/version
http://localhost:21000/api/atlas/types
http://localhost:21000/api/atlas/entities?type=hive_table
http://localhost:21000/api/atlas/entities/list/hive_db

	Building, Configuring & Installing Apache Atlas

