
1.  

2.  

3.  
4.  

1.  
2.  
3.  

4.  

How to Contribute

Where to start.
How to generate patches by formatting patch files
How to generate patches by creating pull requests
REVIEWING PATCHES (reviewer guidelines)
For Committers: how to commit patches
For Committers: how to commit a patch in both master and release branch

Where to start.
You need the source code tree to work with. You can clone the repo either from

official Apache Bigtop repo

Clone the repo

git clone https://gitbox.apache.org/repos/asf/bigtop.git

or from Github mirror (see )https://github.com/apache/bigtop

How to generate patches by formatting patch files
We use git as our version control system. To streamline the process of giving proper credit to the contributors when committing patches, we encourage 
contributors to submit patches generated using . This has many benefits:git format-patch

Committers can't forget to attribute proper credit to the contributor
The contributors name and email address shows up in git log
When viewing Bigtop's source code on github.com/apache/bigtop, the commits from the contributor are linked to their github.com account if it's 
linked to the same email address they used when generating the git format-patch

Long story short, it makes both the contributors' and committers' lives easier, so please generate your patches using .git format-patch

Here are some instructions on how to generate patches:

Ensure that you have all of your change as 1 commit which has the correct commit message - something like BIGTOP-1031: README has 
outdated/ambiguous information
Run mvn apache-rat:check to make sure that newly added files do not have any licensing issues. When in doubt refer to https://www.apache.
org/licenses/
Then run a command like: git format-patch HEAD^..HEAD --stdout > BIGTOP-1031.patch
Upload the BIGTOP-1031.1.patch file to this JIRA

The naming of the patch file is up to you. The preferred way however is to just name the file after the JIRA ticket e.g. BIGTOP-1031.patch. In the latter 
case, If case you need to upload another version  of the patch, you should keep the file name the same and JIRA will sort them according to date/time if 
multiple files have the same name. This feature is also useful to traceback the history of a patch and roll-back to an earlier version if needed.

How to generate patches by creating pull requests
Folk Bigtop from https://github.com/apache/bigtop
Develop your patch in your own branch
Ensure that you have all of your change as 1 commit which has the correct commit message - something like BIGTOP-1031: README has 
outdated/ambiguous information
Create a Pull Request against Bigtop master branch on Github with the PR title BIGTOP-1031: README has outdated/ambiguous 
information

REVIEWING PATCHES (reviewer guidelines)
The steady pace of the contributions relies on how effectively we can review, give feedback, and commit new patches. JIRA provides a nice workflow that 
allows to indicate which patches are ready for a review. Once you decided that your patch is good for others' comments change the JIRA status to Patch 
Available. That will be the indication to anyone that a comments and review are requested. For your convenience, here's the filter that shows all JIRAs in 
PA state

Contributors and Committers:  Go over this checklist for your patches

(Hopefully more of this will be automated by  )https://issues.apache.org/jira/browse/BIGTOP-1249

https://github.com/apache/bigtop
https://www.apache.org/licenses/
https://www.apache.org/licenses/
https://github.com/apache/bigtop
https://issues.apache.org/jira/issues/?filter=12330601
https://issues.apache.org/jira/issues/?filter=12330601
https://issues.apache.org/jira/browse/BIGTOP-1249


Commit message should be part of the patch, see the recipe above using "git format-patch" for a way to do that.
Commit message should be 1 line long.  If you have multiple commits , squash them and rename them as in the next bullet:
Commit message should be of the format "JIRA #. JIRA synopsis", for example "BIGTOP-1234. A patch that makes Bigtop awesome".
Commits should be +1's by one committer (not the submitter) before committing.
Commits which modify the way we  Bigtop should modify corresponding README files as well.run
Reviews from non-committers are highly encouraged as it helps you to learn more about the project and helps to catch more issues.
Follow Apache Hadoop formatting guidelines:

No trailing whitespace on lines
Code must be formatted according to  , with one exception:Sun's conventions  
Indent two spaces per level, not four.

CODE vs Docs
DOCs commits (README files, README.md files, and .txt files) can be commited by simply stating in the JIRA ("DOC")

For Committers: how to commit patches
While  is typically used for applying patches generated using , we recommend that committers use the  flag when git am git format-patch --signoff
using . This way the commit, even though is attributed to the contributor, it shows the committer's name in the log message as "Signed-off-by: git am
<Committer name>" which can be useful.
Consequently, to commit a patch, do the following:

git am --signoff < BIGTOP-1031.patch

Once the patch is committed, please update the JIRA ticket:

make sure that  and  are correctly set against the release the issue is found in and is fixed againstAffects Version/s: Fix Version/s:
make sure that  field has correct valuesComponent/s:
make sure the ticket is assigned to the person who contributed to code. If such person isn't yet marked as a contributor and the ticket can not be 
assigned to her/him - please ping anyone who has JIRA project admin. rights - pretty much any PMC member. Please remember that correct 
attribution is an important part of the contribution.
make sure the status of the ticket is set to Resolved

For Committers: how to commit a patch in both master and release branch
This section is to talk about how Bigtop deal with the situation that a patch needs to be committed in both master and release branch. This often happened 
when a bug is discovered at the time we already created the release branch. To handle such scenario, Bigtop uses feature branch model. (To know more 
about git branching model, see )http://nvie.com/posts/a-successful-git-branching-model/

For instance, if patch BIGTOP-1886.patch is getting in both master and , then we should create a feature branch from branch-1.0 named branch-1.0 BIGTO
P-1886, and add BIGTOP-1886.patch on top of BIGTOP-1886 branch, then merge BIGTOP-1886 branch into master and , respectively. This branch-1.0
will give same commit sha1 of patch BIGTOP-1886 in both branch-1.0 and master.

Here's a concrete example for what to do when we'd like to add fix 1 and fix 2 in both branch-1.0 and master. The example was contributed by Olaf Flebbe.

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://nvie.com/posts/a-successful-git-branching-model/


#inital setup of repo
git init 
# Development step on master
echo step1 >file
git add file
git commit -m step1

# Now we branch the release candidate
git checkout -b branch-1.0
# and doing the release
echo release >changelog
git add changelog
git commit -m "release-1.0 branch finished"
git tag release-1.0.0
# development on master continues
git checkout master
echo development > development
git add development
git commit -m "development on master"

# Oops two fixes are needed
# create a working branch for these
git checkout branch-1.0
git checkout -b fixes-1.0
echo "fix 1 1.0" to  >fix10
echo "fix 2 1.0" to  >fix20
git add fix10 
git commit -m "fix 1 on 1.0.0" fix10
git add fix20
git commit -m "fix 2 on 1.0.0" fix20
# merge fix branch in release branch0
git checkout branch-1.0
git merge -m "merge fixes-1.0" fixes-1.0
# new release
echo release 1.0.1 >> changelog
git add changelog
git commit -m "release-1.0.1" 
git tag release-1.0.1
# Merge fixes on development, too
git checkout master
git merge -m "merge fixes-1.0" fixes-1.0 
# continue development
echo devel >>development 
git commit -a -m "development2"


	How to Contribute

