
CDI

Camel CDI

The Camel CDI component provides auto-configuration for Apache Camel using CDI as dependency injection framework based on convention-over-
. It auto-detects Camel routes available in the application and provides beans for common Camel primitives like configuration , Endpoint ProducerTempl

 or . It implements standard so that Camel annotations like , and ate TypeConverter Camel bean integration @Consume @Produce @PropertyInject
. Besides, it bridges Camel events (e.g. , , can be used seamlessly in CDI beans RouteAddedEvent CamelContextStartedEvent ExchangeComplete

, ...) as CDI events and provides a CDI events endpoint that can be used to consume / produce CDI events from / to Camel routes.dEvent

Auto-Configured Camel Context

Camel CDI automatically deploys and configures a bean. That bean is automatically instantiated, configured and started CamelContext CamelContext
(resp. stopped) when the CDI container initializes (resp. shuts down). It can be injected in the application, e.g.:

@Inject
CamelContext context;

That default bean is qualified with the built-in qualifier, is scoped and is of type CamelContext @Default @ApplicationScoped DefaultCamelConte
.xt

Note that this bean can be customized programmatically and other Camel context beans can be deployed in the application as well.

Auto-Detecting Camel Routes

Camel CDI automatically collects all the beans in the application, instantiates and add them to the bean instance when RoutesBuilder CamelContext
the CDI container initializes. For example, adding a Camel route is as simple as declaring a class, e.g.:

class MyRouteBean extends RouteBuilder {

 @Override
 public void configure() {
 from("jms:invoices").to("file:/invoices");
 }
}

Note that you can declare as many beans as you want. Besides, beans are also automatically collected, instantiated RoutesBuilder RouteContainer
and added to the bean instance managed by Camel CDI when the container initializes.CamelContext

Available as of Camel 2.19

In some situations, it may be necessary to disable the auto-configuration of the and beans. That can be achieved by RouteBuilder RouteContainer
observing for the event, e.g.: CdiCamelConfiguration

static void configuration(@Observes CdiCamelConfiguration configuration) {
 configuration.autoConfigureRoutes(false);
}

Similarly, it is possible to deactivate the automatic starting of the configured beans, e.g.:CamelContext

static void configuration(@Observes CdiCamelConfiguration configuration) {
 configuration.autoStartContexts(false);
}

Auto-Configured Camel Primitives

While the Camel CDI component is available as of , it's been rewritten in to better fit into the CDI programming model. Camel 2.10 Camel 2.17
Hence some of the features like the Camel events to CDI events bridge and the CDI events endpoint only apply starting Camel 2.17.

More details on how to test Camel CDI applications are available in .Camel CDI testing

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/CDI+Testing

Camel CDI provides beans for common Camel primitives that can be injected in any CDI beans, e.g.:

@Inject
@Uri("direct:inbound")
ProducerTemplate producerTemplate;

@Inject
MockEndpoint outbound; // URI defaults to the member name, i.e. mock:outbound

@Inject
@Uri("direct:inbound")
Endpoint endpoint;

@Inject
TypeConverter converter;

Camel Context Configuration

If you just want to change the name of the default bean, you can used the qualifier provided by Camel CDI, e.g.:CamelContext @ContextName

@ContextName("camel-context")
class MyRouteBean extends RouteBuilder {

 @Override
 public void configure() {
 from("jms:invoices").to("file:/invoices");
 }
}

Else, if more customization is needed, any class can be used to declare a custom Camel context bean. Then, the and CamelContext @PostConstruct
 lifecycle callbacks can be done to do the customization, e.g.:@PreDestroy

@ApplicationScoped
class CustomCamelContext extends DefaultCamelContext {

 @PostConstruct
 void customize() {
 // Set the Camel context name
 setName("custom");
 // Disable JMX
 disableJMX();
 }

 @PreDestroy
 void cleanUp() {
 // ...
 }
}

Producer and methods can also be used as well to customize the Camel context bean, e.g.:disposer

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#producer_method
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#disposer_method

class CamelContextFactory {

 @Produces
 @ApplicationScoped
 CamelContext customize() {
 DefaultCamelContext context = new DefaultCamelContext();
 context.setName("custom");
 return context;
 }

 void cleanUp(@Disposes CamelContext context) {
 // ...
 }
}

Similarly, can be used, e.g.:producer fields

@Produces
@ApplicationScoped
CamelContext context = new CustomCamelContext();

class CustomCamelContext extends DefaultCamelContext {

 CustomCamelContext() {
 setName("custom");
 }
}

This pattern can be used for example to avoid having the Camel context routes started automatically when the container initializes by calling the setAutoS
 method, e.g.:tartup

@ApplicationScoped
class ManualStartupCamelContext extends DefaultCamelContext {

 @PostConstruct
 void manual() {
 setAutoStartup(false);
 }
}

Multiple Camel Contexts

Any number of beans can actually be declared in the application as documented above. In that case, the CDI qualifiers declared on these CamelContext
 beans are used to bind the Camel routes and other Camel primitives to the corresponding Camel contexts. From example, if the following CamelContext

beans get declared:

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#producer_field

@ApplicationScoped
@ContextName("foo")
class FooCamelContext extends DefaultCamelContext {
}

@ApplicationScoped
@BarContextQualifier
class BarCamelContext extends DefaultCamelContext {
}

@ContextName("foo")
class RouteAdddedToFooCamelContext extends RouteBuilder {

 @Override
 public void configure() {
 // ...
 }
}

@BarContextQualifier
class RouteAdddedToBarCamelContext extends RouteBuilder {

 @Override
 public void configure() {
 // ...
 }
}

@ContextName("baz")
class RouteAdddedToBazCamelContext extends RouteBuilder {

 @Override
 public void configure() {
 // ...
 }
}

@MyOtherQualifier
class RouteNotAddedToAnyCamelContext extends RouteBuilder {

 @Override
 public void configure() {
 // ...
 }
}

The beans qualified with are automatically added to the corresponding beans by Camel CDI. If no such RoutesBuilder @ContextName CamelContext
 bean exists, it gets automatically created, as for the bean. Note this only happens for the CamelContext RouteAddedToBazCamelContext @ContextN

 qualifier provided by Camel CDI. Hence the bean qualified with the user-defined qualiame RouteNotAddedToAnyCamelContext @MyOtherQualifier
fier does not get added to any Camel contexts. That may be useful, for example, for Camel routes that may be required to be added later during the
application execution.

The CDI qualifiers declared on the beans are also used to bind the corresponding Camel primitives, e.g.:CamelContext

Since Camel version 2.17.0, Camel CDI is capable of managing any kind of beans. In previous versions, it is only capable of CamelContext
managing beans of type so it is required to extend it.CdiCamelContext

@Inject
@ContextName("foo")
@Uri("direct:inbound")
ProducerTemplate producerTemplate;

@Inject
@BarContextQualifier
MockEndpoint outbound; // URI defaults to the member name, i.e. mock:outbound

@Inject
@ContextName("baz")
@Uri("direct:inbound")
Endpoint endpoint;

Configuration Properties

To configure the sourcing of the configuration properties used by Camel to resolve properties placeholders, you can declare a bePropertiesComponent
an qualified with , e.g.:@Named("properties")

@Produces
@ApplicationScoped
@Named("properties")
PropertiesComponent propertiesComponent() {
 Properties properties = new Properties();
 properties.put("property", "value");
 PropertiesComponent component = new PropertiesComponent();
 component.setInitialProperties(properties);
 component.setLocation("classpath:placeholder.properties");
 return component;
}

If you want to use you can declare the following bean:DeltaSpike configuration mechanism PropertiesComponent

@Produces
@ApplicationScoped
@Named("properties")
PropertiesComponent properties(PropertiesParser parser) {
 PropertiesComponent component = new PropertiesComponent();
 component.setPropertiesParser(parser);
 return component;
}

// PropertiesParser bean that uses DeltaSpike to resolve properties
static class DeltaSpikeParser extends DefaultPropertiesParser {
 @Override
 public String parseProperty(String key, String value, Properties properties) {
 return ConfigResolver.getPropertyValue(key);
 }
}

You can see the example for a working example of a Camel CDI application using DeltaSpike configuration camel-example-cdi-properties
mechanism.

Auto-Configured Type Converters

CDI beans annotated with the annotation are automatically registered into the deployed Camel contexts, e.g.:@Converter

http://deltaspike.apache.org/documentation/configuration.html

@Converter
public class MyTypeConverter {

 @Converter
 public Output convert(Input input) {
 //...
 }
}

Note that CDI injection is supported within the type converters.

Camel Bean Integration

Camel Annotations

As part of the Camel , Camel comes with a set of that are seamlessly supported by Camel CDI. So you can use any of these bean integration annotations
annotations in your CDI beans, e.g.:

 Camel annotation CDI equivalent

Configuration property
@PropertyInject("key")
String value;

If using DeltaSpike configuration
:mechanism

@Inject
@ConfigProperty(name =
"key")
String value;

See for more configuration properties
details.

Producer template injection (default
Camel context) @Produce(uri = "mock:outbound")

ProducerTemplate producer;
@Inject
@Uri("direct:outbound")
ProducerTemplate
producer;

Endpoint injection (default Camel context)
@EndpointInject(uri = "direct:inbound")
Endpoint endpoint;

@Inject
@Uri("direct:inbound")
Endpoint endpoint;

Endpoint injection (Camel context by
name) @EndpointInject(uri = "direct:inbound",

context = "foo")
Endpoint contextEndpoint;

@Inject
@ContextName("foo")
@Uri("direct:inbound")
Endpoint contextEndpoint;

Bean injection (by type)
@BeanInject
MyBean bean;

@Inject
MyBean bean;

Bean injection (by name)
@BeanInject("foo")
MyBean bean;

@Inject
@Named("foo")
MyBean bean;

http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html#BeanIntegration-Annotations
http://deltaspike.apache.org/documentation/configuration.html
http://deltaspike.apache.org/documentation/configuration.html

POJO consuming
@Consume(uri = "seda:inbound")
void consume(@Body String body) {
 //...
}

Bean Component

You can refer to CDI beans, either by type or name, from the Camel DSL, e.g., using the Java DSL:

class MyBean {
 //...
}

from("direct:inbound").bean(MyBean.class);

Or to lookup a CDI bean by name from the Java DSL:

@Named("foo")
class MyNamedBean {
 //...
}

from("direct:inbound")
 .bean("foo");

Referring Beans From Endpoint URIs

When configuring endpoints using the URI syntax you can refer to beans in the Registry using the notation.# If the URI parameter value starts with a #
sign then Camel CDI will lookup for a bean of the given type by name, e.g.:

from("jms:queue:{{destination}}?transacted=true&transactionManager=#jtaTransactionManager")
 .to("...");

Having the following CDI bean qualified with :@Named("jtaTransactionManager")

@Produces
@Named("jtaTransactionManager")
PlatformTransactionManager createTransactionManager(TransactionManager transactionManager, UserTransaction
userTransaction) {
 JtaTransactionManager jtaTransactionManager = new JtaTransactionManager();
 jtaTransactionManager.setUserTransaction(userTransaction);
 jtaTransactionManager.setTransactionManager(transactionManager);
 jtaTransactionManager.afterPropertiesSet();
 return jtaTransactionManager;
}

Camel Events to CDI Events

Available as of Camel 2.17

Camel provides a set of that can be subscribed to for listening to Camel context, service, route and exchange events. Camel CDI management events
seamlessly translates these Camel events into CDI events that can be observed using CDI , e.g.:observer methods

void onContextStarting(@Observes CamelContextStartingEvent event) {
 // Called before the default Camel context is about to start
}

From Camel 2.18: it's possible to observe events for a particular route (, , and RouteAddedEvent RouteStartedEvent RouteStoppedEvent RouteRe
) should it have an explicit defined, e.g.:movedEvent

https://cwiki.apache.org/confluence/display/CAMEL/Registry
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/event/package-summary.html
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_methods

from("...").routeId("foo").to("...");

void onRouteStarted(@Observes @Named("foo") RouteStartedEvent event) {
 // Called after the route "foo" has started
}

When multiple Camel contexts exist in the CDI container, the Camel context bean qualifiers, like , can be used to refine the observer @ContextName
method resolution to a particular Camel context as specified in , e.g.:observer resolution

void onRouteStarted(@Observes @ContextName("foo") RouteStartedEvent event) {
 // Called after the route 'event.getRoute()' for the Camel context 'foo' has started
}

void onContextStarted(@Observes @Manual CamelContextStartedEvent event) {
 // Called after the the Camel context qualified with '@Manual' has started
}

Similarly, the qualifier can be used to observe Camel events for the Camel context if multiples contexts exist, e.g.:@Default default

void onExchangeCompleted(@Observes @Default ExchangeCompletedEvent event) {
 // Called after the exchange 'event.getExchange()' processing has completed
}

In that example, if no qualifier is specified, the qualifier is implicitly assumed, so that corresponding events for all the Camel contexts get received.@Any

Note that the support for Camel events translation into CDI events is only activated if observer methods listening for Camel events are detected in the
deployment, and that per Camel context.

CDI Events Endpoint

Available as of Camel 2.17

The CDI event endpoint bridges the with the Camel routes so that CDI events can be seamlessly observed / consumed (resp. produced / fired) CDI events
from Camel consumers (resp. by Camel producers).

The bean provided by Camel CDI can be used to observe / consume CDI events whose is , for example:CdiEventEndpoint<T> event type T

@Inject
CdiEventEndpoint<String> cdiEventEndpoint;

from(cdiEventEndpoint).log("CDI event received: ${body}");

This is equivalent to writing:

@Inject
@Uri("direct:event")
ProducerTemplate producer;

void observeCdiEvents(@Observes String event) {
 producer.sendBody(event);
}

from("direct:event")
 .log("CDI event received: ${body}");

Conversely, the bean can be used to produce / fire CDI events whose is , for example:CdiEventEndpoint<T> event type T

@Inject
CdiEventEndpoint<String> cdiEventEndpoint;

from("direct:event")
 .to(cdiEventEndpoint).log("CDI event sent: ${body}");

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_resolution
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#events

This is equivalent to writing:

@Inject
Event<String> event;

from("direct:event").process(new Processor() {
 @Override
 public void process(Exchange exchange) {
 event.fire(exchange.getBody(String.class));
 }
}).log("CDI event sent: ${body}");

Or using a Java 8 lambda expression:

@Inject
Event<String> event;

from("direct:event")
 .process(exchange -> event.fire(exchange.getIn().getBody(String.class)))
 .log("CDI event sent: ${body}");

The type variable (resp. the qualifiers) of a particular injection point are automatically translated into the parameterized T CdiEventEndpoint<T> event
 (resp. into the) e.g.:type event qualifiers

@Inject
@FooQualifier
CdiEventEndpoint<List<String>> cdiEventEndpoint;

from("direct:event").to(cdiEventEndpoint);

void observeCdiEvents(@Observes @FooQualifier List<String> event) {
 logger.info("CDI event: {}", event);
}

When multiple Camel contexts exist in the CDI container, the Camel context bean qualifiers, like , can be used to qualify the @ContextName CdiEventEnd
 injection points, e.g.:point<T>

@Inject
@ContextName("foo")
CdiEventEndpoint<List<String>> cdiEventEndpoint;
// Only observes / consumes events having the @ContextName("foo") qualifier
from(cdiEventEndpoint).log("Camel context (foo) > CDI event received: ${body}");
// Produces / fires events with the @ContextName("foo") qualifier
from("...").to(cdiEventEndpoint);

void observeCdiEvents(@Observes @ContextName("foo") List<String> event) {
 logger.info("Camel context (foo) > CDI event: {}", event);
}

Note that the CDI event Camel endpoint dynamically adds an for each unique combination of and and solely observer method event type event qualifiers
relies on the container typesafe , which leads to an implementation as efficient as possible.observer resolution

Besides, as the impedance between the nature of CDI and the nature of the model is quite high, it is not possible to typesafe dynamic Camel component
create an instance of the CDI event Camel endpoint via . Indeed, the URI format for the CDI event component is:URIs

cdi-event://PayloadType<T1,...,Tn>[?qualifiers=QualifierType1[,...[,QualifierTypeN]...]]

With the authority (resp. the) being the URI escaped fully qualified name of the payload (resp. qualifier) raw type followed PayloadType QualifierType
by the type parameters section delimited by angle brackets for payload parameterized type. Which leads to URIs, e.g.:unfriendly

cdi-event://org.apache.camel.cdi.example.EventPayload%3Cjava.lang.Integer%3E?qualifiers=org.apache.camel.cdi.
example.FooQualifier%2Corg.apache.camel.cdi.example.BarQualifier

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_methods
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_resolution
http://camel.apache.org/component.html
http://camel.apache.org/uris.html

But more fundamentally, that would prevent efficient binding between the endpoint instances and the observer methods as the CDI container doesn't have
any ways of discovering the Camel context model during the deployment phase.

Camel XML Configuration Import

Available as of Camel 2.18

While CDI favors a typesafe dependency injection mechanism, it may be useful to reuse existing Camel XML configuration files into a Camel CDI
application. In other use cases, it might be handy to rely on the Camel XML DSL to configure its Camel context(s).

You can use the annotation that's provided by Camel CDI on any CDI beans and Camel CDI will automatically load the Camel XML @ImportResource
configuration at the specified locations, e.g.:

@ImportResource("camel-context.xml")
class MyBean {
}

Camel CDI will load the resources at the specified locations from the classpath (other protocols may be added in the future).

Every elements and other Camel primitives from the imported resources are automatically deployed as CDI beans during the container CamelContext
bootstrap so that they benefit from the auto-configuration provided by Camel CDI and become available for injection at run-time. If such an element has an
explicit attribute set, the corresponding CDI bean is qualified with the qualifier, e.g., given the following Camel XML configuration:id @Named

<camelContext id="foo">
 <endpoint id="bar" uri="seda:inbound">
 <property key="queue" value="#queue"/>
 <property key="concurrentConsumers" value="10"/>
 </endpoint>
<camelContext/>

The corresponding CDI beans are automatically deployed and can be injected, e.g.:

@Inject
@ContextName("foo")
CamelContext context;

@Inject
@Named("bar")
Endpoint endpoint;

Note that the CamelContext beans are automatically qualified with both the Named and ContextName qualifiers. If the imported CamelContext element
doesn't have an id attribute, the corresponding bean is deployed with the built-in Default qualifier.

Conversely, CDI beans deployed in the application can be referred to from the Camel XML configuration, usually using the attribute, e.g., given the ref
following bean declared:

@Produces
@Named("baz")
Processor processor = exchange -> exchange.getIn().setHeader("qux", "quux");

A reference to that bean can be declared in the imported Camel XML configuration, e.g.:

<camelContext id="foo">
 <route>
 <from uri="..."/>
 <process ref="baz"/>
 </route>
<camelContext/>

Transaction support

Available as of Camel 2.19

Camel CDI provides support for Camel using JTA.transactional client

https://cwiki.apache.org/confluence/display/CAMEL/Transactional+Client

That support is optional hence you need to have JTA in your application classpath, e.g., by explicitly add JTA as a dependency when using Maven:

<dependency>
 <groupId>javax.transaction</groupId>
 <artifactId>javax.transaction-api</artifactId>
 <scope>runtime</scope>
</dependency>

You'll have to have your application deployed in a JTA capable container or provide a standalone JTA implementation.

Transaction policies

Camel CDI provides implementation for the typically supported Camel as CDI beans. It is possible to have these policies looked up TransactedPolicy
by name using the EIP, e.g.:transacted

class MyRouteBean extends RouteBuilder {

 @Override
 public void configure() {
 from("activemq:queue:foo")
 .transacted("PROPAGATION_REQUIRED")
 .bean("transformer")
 .to("jpa:my.application.entity.Bar")
 .log("${body.id} inserted");
 }
}

This would be equivalent to:

class MyRouteBean extends RouteBuilder {

 @Inject
 @Named("PROPAGATION_REQUIRED")
 Policy required;

 @Override
 public void configure() {
 from("activemq:queue:foo")
 .policy(required)
 .bean("transformer")
 .to("jpa:my.application.entity.Bar")
 .log("${body.id} inserted");
 }
}

The list of supported transaction policy names is: , , , PROPAGATION_NEVER PROPAGATION_NOT_SUPPORTED PROPAGATION_SUPPORTS PROPAGATION_R
, , , .EQUIRED PROPAGATION_REQUIRES_NEW PROPAGATION_NESTED PROPAGATION_MANDATORY

Transactional error handler

Camel CDI provides a transactional that extends the redelivery error handler, forces a rollback whenever an exception occurs and creates a error handler
new transaction for each redelivery. Camel CDI provides the class that exposes the helper method to CdiRouteBuilder transactionErrorHandler
enable quick access to the configuration, e.g.:

Note that, for the time being, the transaction manager is looked up as JNDI resource with the key. More java:/TransactionManager
flexible strategies will be added in the future to support a wider range of deployment scenarios.

https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler

class MyRouteBean extends CdiRouteBuilder {

 @Override
 public void configure() {
 errorHandler(transactionErrorHandler()
 .setTransactionPolicy("PROPAGATION_SUPPORTS")
 .maximumRedeliveries(5)
 .maximumRedeliveryDelay(5000)
 .collisionAvoidancePercent(10)
 .backOffMultiplier(1.5));
 }
}

Auto-configured OSGi integration

Available as of Camel 2.17

The Camel context beans are automatically adapted by Camel CDI so that they are registered as OSGi services and the various resolvers (like Component
 and) integrate with the OSGi registry. That means that the can be used to operate the Camel Resolver DataFormatResolver Karaf Camel commands

contexts auto-configured by Camel CDI, e.g.:

karaf@root()> camel:context-list
 Context Status Total # Failed # Inflight # Uptime
 ------- ------ ------- -------- ---------- ------
 camel-cdi Started 1 0 0 1 minute

See the example for a working example of the Camel CDI OSGi integration.camel-example-cdi-osgi

Lazy Injection / Programmatic Lookup

Available as of Camel 2.17

While the CDI programmatic model favors a mechanism that occurs at application initialization time, it is possible to perform dynamic / type-safe resolution
lazy injection later during the application execution using the mechanism.programmatic lookup

Camel CDI provides for convenience the annotation literals corresponding to the CDI qualifiers that you can use for standard injection of Camel primitives.
These annotation literals can be used in conjunction with the interface which is the CDI entry point to perform javax.enterprise.inject.Instance
lazy injection / programmatic lookup.

For example, you can use the provided annotation literal for the qualifier to lazily lookup for Camel primitives, e.g. for beans:@Uri ProducerTemplate

@Any
@Inject
Instance<ProducerTemplate> producers;

ProducerTemplate inbound = producers
 .select(Uri.Literal.of("direct:inbound"))
 .get();

Or for beans, e.g.:Endpoint

@Any
@Inject
Instance<Endpoint> endpoints;

MockEndpoint outbound = endpoints
 .select(MockEndpoint.class, Uri.Literal.of("mock:outbound"))
 .get();

Similarly, you can use the provided annotation literal for the qualifier to lazily lookup for beans, e.g.: @ContextName CamelContext

https://cwiki.apache.org/confluence/display/CAMEL/Karaf#Karaf-Karafcommands
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#typesafe_resolution
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#programmatic_lookup

@Any
@Inject
Instance<CamelContext> contexts;

CamelContext context = contexts
 .select(ContextName.Literal.of("foo"))
 .get();

You can also refined the selection based on the Camel context type, e.g.:

@Any
@Inject
Instance<CamelContext> contexts;

// Refine the selection by type
Instance<DefaultCamelContext> context = contexts.select(DefaultCamelContext.class);

// Check if such a bean exists then retrieve a reference
if (!context.isUnsatisfied())
 context.get();

Or even iterate over a selection of Camel contexts, e.g.:

@Any
@Inject
Instance<CamelContext> contexts;

for (CamelContext context : contexts)
 context.setUseBreadcrumb(true);

Maven Archetype

Among the available , you can use the provided to generate a Camel CDI Maven project, e.g.:Camel Maven archetypes camel-archetype-cdi

mvn archetype:generate -DarchetypeGroupId=org.apache.camel.archetypes -DarchetypeArtifactId=camel-archetype-cdi

Supported Containers

The Camel CDI component is compatible with any CDI 1.0, CDI 1.1 and CDI 1.2 compliant runtime. It's been successfully tested against the following
runtimes:

Container Version Runtime

Weld SE 1.1.28.Final CDI 1.0 / Java SE 7

OpenWebBeans 1.2.7 CDI 1.0 / Java SE 7

Weld SE 2.4.1.Final CDI 1.2 / Java SE 7

OpenWebBeans 1.7.0 CDI 1.2 / Java SE 7

WildFly 8.2.1.Final CDI 1.2 / Java EE 7

WildFly 9.0.1.Final CDI 1.2 / Java EE 7

WildFly 10.0.0.Final CDI 1.2 / Java EE 7

Karaf 2.4.4 CDI 1.2 / OSGi 4 / PAX CDI

Karaf 3.0.5 CDI 1.2 / OSGi 5 / PAX CDI

Karaf 4.0.4 CDI 1.2 / OSGi 6 / PAX CDI

Examples

The following examples are available in the directory of the Camel project:examples

https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Archetypes

Example Description

camel-example-cdi Illustrates how to work with Camel using CDI to configure components, endpoints and beans

camel-example-cdi-kubernetes Illustrates the integration between Camel, CDI and Kubernetes

camel-example-cdi-metrics Illustrates the integration between Camel, Dropwizard Metrics and CDI

camel-example-cdi-properties Illustrates the integration between Camel, DeltaSpike and CDI for configuration properties

camel-example-cdi-osgi A CDI application using the SJMS component that can be executed inside an OSGi container using PAX CDI

camel-example-cdi-test Demonstrates the testing features that are provided as part of the integration between Camel and CDI

camel-example-cdi-rest-
servlet

Illustrates the Camel REST DSL being used in a Web application that uses CDI as dependency injection
framework

camel-example-cdi-xml Illustrates the use of Camel XML configuration files into a Camel CDI application

camel-example-widget-gadget-
cdi

The Widget and Gadget use-case from the EIP book implemented in Java with CDI dependency injection

camel-example-swagger-cdi An example using REST DSL and Swagger Java with CDI

See Also

Camel CDI Testing
CDI Web site
CDI ecosystem
Going further with CDI (See Camel CDI section)

https://cwiki.apache.org/confluence/display/CAMEL/CDI+Testing
http://www.cdi-spec.org
http://www.cdi-spec.org/ecosystem/
https://github.com/astefanutti/further-cdi

	CDI

