CDI

Camel CDI

The Camel CDI component provides auto-configuration for Apache Camel using CDI as dependency injection framework based on convention-over-
configuration. It auto-detects Camel routes available in the application and provides beans for common Camel primitives like Endpoi nt , Pr oducer Tenpl
at e or TypeConvert er . It implements standard Camel bean integration so that Camel annotations like @onsune, @r oduce and @r opertyl nj ect
can be used seamlessly in CDI beans. Besides, it bridges Camel events (e.g. Rout eAddedEvent , Canel Cont ext St art edEvent , ExchangeConpl et e
dEvent, ...) as CDI events and provides a CDI events endpoint that can be used to consume / produce CDI events from / to Camel routes.

G) While the Camel CDI component is available as of Camel 2.10, it's been rewritten in Camel 2.17 to better fit into the CDI programming model.
Hence some of the features like the Camel events to CDI events bridge and the CDI events endpoint only apply starting Camel 2.17.

@ More details on how to test Camel CDI applications are available in Camel CDI testing.

Auto-Configured Camel Context

Camel CDI automatically deploys and configures a Canel Cont ext bean. That Canel Cont ext bean is automatically instantiated, configured and started
(resp. stopped) when the CDI container initializes (resp. shuts down). It can be injected in the application, e.g.:

@ nj ect
Canel Cont ext context;

That default Canel Cont ext bean is qualified with the built-in @ef aul t qualifier, is scoped @\ppl i cat i onScoped and is of type Def aul t Canel Cont e
Xt .

Note that this bean can be customized programmatically and other Camel context beans can be deployed in the application as well.

Auto-Detecting Camel Routes

Camel CDI automatically collects all the Rout esBui | der beans in the application, instantiates and add them to the Canel Cont ext bean instance when
the CDI container initializes. For example, adding a Camel route is as simple as declaring a class, e.g.:

cl ass MyRout eBean extends RouteBuil der {

@verride
public void configure() {
from("jms:invoices").to("file:/invoices");

}

Note that you can declare as many Rout esBui | der beans as you want. Besides, Rout eCont ai ner beans are also automatically collected, instantiated
and added to the Carel Cont ext bean instance managed by Camel CDI when the container initializes.

Available as of Camel 2.19

In some situations, it may be necessary to disable the auto-configuration of the Rout eBui | der and Rout eCont ai ner beans. That can be achieved by
observing for the Cdi Canel Conf i gur ati on event, e.g.:

static void configuration(@bserves Cdi Canel Configuration configuration) {
configuration. aut oConfi gureRout es(fal se);

}

Similarly, it is possible to deactivate the automatic starting of the configured Canel Cont ext beans, e.g.:

static void configuration(@bserves Cdi Canel Configuration configuration) {
configuration. autoStart Contexts(false);

}

Auto-Configured Camel Primitives

https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration
https://cwiki.apache.org/confluence/display/CAMEL/CDI+Testing

Camel CDI provides beans for common Camel primitives that can be injected in any CDI beans, e.g.:

@ nj ect
@Jri ("direct:inbound")
Producer Tenpl at e producer Tenpl at e;

@ nj ect
MockEndpoi nt outbound; // URI defaults to the nenber nane, i.e. nock:outbound

@nj ect
@Jri("direct:inbound")
Endpoi nt endpoi nt ;

@ nj ect
TypeConverter converter;

Camel Context Configuration

If you just want to change the name of the default Canel Cont ext bean, you can used the @ont ext Nane qualifier provided by Camel CDI, e.g.:

@Cont ext Nane("canel - context")
cl ass MyRout eBean extends RouteBuil der {

@verride
public void configure() {
from("jms:invoices").to("file:/invoices");

}

Else, if more customization is needed, any Canel Cont ext class can be used to declare a custom Camel context bean. Then, the @ost Const ruct and
@r eDest r oy lifecycle callbacks can be done to do the customization, e.g.:

@\ppl i cati onScoped
cl ass CustontCanel Cont ext extends Def aul t Canel Cont ext {

@post Const ruct
voi d customi ze() {
/'l Set the Canel context name
set Nanme("custont');
/1 Disable JMX
di sabl eIJMX();

}

@r eDest r oy

voi d cleanUp() {
11

}

Producer and disposer methods can also be used as well to customize the Camel context bean, e.g.:

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#producer_method
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#disposer_method

cl ass Canel Cont ext Factory {

@r oduces

@\ppl i cati onScoped

Canel Cont ext custom ze() {
Def aul t Canmel Cont ext context = new Def aul t Canmel Cont ext () ;
cont ext . set Name(" custont') ;
return context;

}

voi d cl eanUp(@i sposes Canel Context context) {
/1

}

Similarly, producer fields can be used, e.g.:

@r oduces
@\ppl i cati onScoped
Canel Cont ext context = new CustontCanel Cont ext ();

cl ass CustonCanel Cont ext extends Def aul t Canel Cont ext {

Cust ontCanel Context () {
set Nanme("custont');

}

This pattern can be used for example to avoid having the Camel context routes started automatically when the container initializes by calling the set Aut 0S
tart up method, e.g.:

@\ppl i cati onScoped
cl ass Manual St art upCanel Cont ext extends Def aul t Canel Cont ext {

@post Const ruct
voi d manual () {
set Aut oSt artup(fal se);

}

Multiple Camel Contexts

Any number of Canel Cont ext beans can actually be declared in the application as documented above. In that case, the CDI qualifiers declared on these
Canel Cont ext beans are used to bind the Camel routes and other Camel primitives to the corresponding Camel contexts. From example, if the following
beans get declared:

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#producer_field

@\ppl i cati onScoped
@Cont ext Nane("fo00")
cl ass FooCanel Cont ext extends Defaul t Camel Cont ext {

}

@\ppl i cati onScoped
@Bar Cont ext Qual i fier
cl ass Bar Canel Cont ext extends Defaul t Canel Cont ext {

}

@cont ext Nane("fo0")
cl ass Rout eAdddedToFooCanel Cont ext extends Rout eBuil der {

@verride
public void configure() {
/1

}
}

@Bar Cont ext Qual i fier
cl ass Rout eAdddedToBar Canel Cont ext extends RouteBuil der {

@verride
public void configure() {
/1

}
}

@Cont ext Nane("baz")
cl ass Rout eAdddedToBazCanel Cont ext extends Rout eBuil der {

@verride
public void configure() {
/1

}
}

@y herQualifier
cl ass Rout eNot AddedToAnyCanel Cont ext extends Rout eBuil der {

@verride
public void configure() {
/1

}

The Rout esBui | der beans qualified with @ont ext Nanme are automatically added to the corresponding Canel Cont ext beans by Camel CDI. If no such
Canel Cont ext bean exists, it gets automatically created, as for the Rout eAddedToBaz Canel Cont ext bean. Note this only happens for the @ont ext N
ame qualifier provided by Camel CDI. Hence the Rout eNot AddedToAnyCanel Cont ext bean qualified with the user-defined @& Q her Qual i fi er quali
fier does not get added to any Camel contexts. That may be useful, for example, for Camel routes that may be required to be added later during the
application execution.

Since Camel version 2.17.0, Camel CDI is capable of managing any kind of Canel Cont ext beans. In previous versions, it is only capable of
managing beans of type Cdi Canel Cont ext so it is required to extend it.

The CDI qualifiers declared on the Canel Cont ext beans are also used to bind the corresponding Camel primitives, e.g.:

@ nj ect

@Cont ext Nane("fo00")

@Jri ("direct:inbound")

Producer Tenpl at e producer Tenpl at e;

@ nj ect

@Bar Cont ext Qual i fier

MockEndpoi nt outbound; // URI defaults to the nenber nane, i.e. nock:outbound
@ nj ect

@ont ext Nane("baz")
@Jri ("direct:inbound")
Endpoi nt endpoi nt;

Configuration Properties

To configure the sourcing of the configuration properties used by Camel to resolve properties placeholders, you can declare a Pr operti esConponent be
an qualified with @lamed(" properties"), e.g.:

@r oduces

@\ppl i cati onScoped

@Naned(" properties")

Properti esConponent propertiesConponent () {
Properties properties = new Properties();
properties. put("property", "value");
Properti esConponent conponent = new PropertiesConponent();
conponent . setlnitial Properties(properties);
conponent . set Locati on("cl asspat h: pl acehol der. properties");
return conponent;

If you want to use DeltaSpike configuration mechanism you can declare the following Pr oper t i esConponent bean:

@°r oduces

@\ppl i cati onScoped

@Naned(" properties")

Properti esConponent properties(PropertiesParser parser) {
Properti esConponent conponent = new PropertiesConponent();
conponent . set Properti esPar ser (parser);
return conponent;

}

/1 PropertiesParser bean that uses DeltaSpi ke to resolve properties
static class Del taSpi keParser extends Defaul t PropertiesParser {
@verride
public String parseProperty(String key, String value, Properties properties) {
return Confi gResol ver. get PropertyVal ue(key);

}

You can see the canel - exanpl e- cdi - properti es example for a working example of a Camel CDI application using DeltaSpike configuration
mechanism.

Auto-Configured Type Converters

CDI beans annotated with the @onver t er annotation are automatically registered into the deployed Camel contexts, e.g.:

http://deltaspike.apache.org/documentation/configuration.html

@Converter
public class MyTypeConverter {

@onverter

public Qutput convert (I nput
/...

}

input) {

Note that CDI injection is supported within the type converters.

Camel Bean Integration

Camel Annotations

As part of the Camel bean integration, Camel comes with a set of annotations that are seamlessly supported by Camel CDI. So you can use any of these

annotations in your CDI beans, e.g.:

Configuration property

Producer template injection (default

Camel context)

Endpoint injection (default Camel context)

Endpoint injection (Camel context by
name)

Bean injection (by type)

Bean injection (by name)

Camel annotation

@ropertyl nject ("key")
String val ue;

@roduce(uri = "nock: out bound")
Producer Tenpl at e producer;

@ndpoi ntInject(uri = "direct:inbound")
Endpoi nt endpoi nt;

@ndpoi ntInject(uri = "direct:inbound",
context = "foo")
Endpoi nt cont ext Endpoi nt ;

@Beanl nj ect
MyBean bean;

@Beanl nj ect ("foo0")
MyBean bean;

CDI equivalent

If using DeltaSpike configuration
mechanism:

@ nj ect

@onfi gProperty(nane =
"key")

String val ue;

See configuration properties for more
details.

@nj ect

@Jri ("direct:outbound")
Producer Tenpl ate
producer;

@ nj ect
@i ("direct:inbound")
Endpoi nt endpoi nt;

@ nj ect

@ont ext Nane("foo0")
@Jri("direct:inbound")
Endpoi nt cont ext Endpoi nt ;

@ nj ect
M/Bean bean;

@ nj ect
@Naned(" foo")
MyBean bean;

http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html#BeanIntegration-Annotations
http://deltaspike.apache.org/documentation/configuration.html
http://deltaspike.apache.org/documentation/configuration.html

POJO consuming

@onsune(uri = "seda: i nbound")

voi d consunme(@ody String body) {
/...

}

Bean Component

You can refer to CDI beans, either by type or name, from the Camel DSL, e.g., using the Java DSL:

cl ass MyBean {
/...

}

from("direct:inbound").bean(MBean. cl ass);

Or to lookup a CDI bean by name from the Java DSL:

@Naned("foo")
cl ass MyNanmedBean {
/...

}

from("direct:inbound")
. bean("foo");

Referring Beans From Endpoint URIs

When configuring endpoints using the URI syntax you can refer to beans in the Registry using the # notation. If the URI parameter value starts with a #
sign then Camel CDI will lookup for a bean of the given type by name, e.g.:

from("jms: queue: {{destination}}?transacted=true& ransacti onManager =#j t aTr ansact i onManager")
Sto(". .. ")

Having the following CDI bean qualified with @Naned("j t aTr ansact i onManager ") :

@r oduces
@Naned("jtaTransacti onManager")
Pl at f or nr ansact i onManager createTransacti onManager (Transacti onManager transacti onManager, User Transacti on
user Transaction) {
JtaTransacti onManager jtaTransacti onManager = new JtaTransacti onManager () ;
jtaTransacti onManager. set User Transact i on(user Transacti on);
jtaTransacti onManager . set Transact i onManager (transacti onManager) ;
jtaTransacti onManager. afterPropertiesSet();
return jtaTransacti onManager;

Camel Events to CDI Events

Available as of Camel 2.17

Camel provides a set of management events that can be subscribed to for listening to Camel context, service, route and exchange events. Camel CDI
seamlessly translates these Camel events into CDI events that can be observed using CDI observer methods, e.g.:

voi d onContext Starti ng(@bserves Canel Context StartingEvent event) {
/] Called before the default Canel context is about to start

}

From Camel 2.18: it's possible to observe events for a particular route (Rout eAddedEvent , Rout eSt ar t edEvent , Rout eSt oppedEvent and Rout eRe
novedEvent) should it have an explicit defined, e.g.:

https://cwiki.apache.org/confluence/display/CAMEL/Registry
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/event/package-summary.html
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_methods

from{("...").routeld("foo").to("...");

voi d onRout eSt art ed(@bserves @\armed("foo0") RouteStartedEvent event) {
/'l Called after the route "foo" has started

}

When multiple Camel contexts exist in the CDI container, the Camel context bean qualifiers, like @ont ext Name, can be used to refine the observer
method resolution to a particular Camel context as specified in observer resolution, e.g.:

voi d onRout eSt art ed(@bserves @ontext Nanme("foo") RouteStartedEvent event) {
/'l Called after the route 'event.getRoute()' for the Canel context 'foo' has started

}

voi d onCont ext St art ed(@bserves @mhanual Canel Cont ext StartedEvent event) {
/] Called after the the Canel context qualified with '@anual' has started

}

Similarly, the @ef aul t qualifier can be used to observe Camel events for the default Camel context if multiples contexts exist, e.g.:

voi d onExchangeConpl et ed(@bserves @efault ExchangeConpl et edEvent event) {
/1 Called after the exchange 'event.get Exchange()' processing has conpl eted

}

In that example, if no qualifier is specified, the @\ny qualifier is implicitly assumed, so that corresponding events for all the Camel contexts get received.

Note that the support for Camel events translation into CDI events is only activated if observer methods listening for Camel events are detected in the
deployment, and that per Camel context.

CDI Events Endpoint

Available as of Camel 2.17

The CDI event endpoint bridges the CDI events with the Camel routes so that CDI events can be seamlessly observed / consumed (resp. produced / fired)
from Camel consumers (resp. by Camel producers).

The Cdi Event Endpoi nt <T> bean provided by Camel CDI can be used to observe / consume CDI events whose event type is T, for example:

@ nj ect
Cdi Event Endpoi nt <Stri ng> cdi Event Endpoi nt ;

from(cdi Event Endpoint).log("CDl event received: ${body}");

This is equivalent to writing:

@ nj ect
@i ("direct:event")
Producer Tenpl at e producer;

voi d observeCdi Event s(@bserves String event) {
producer . sendBody(event);

}

from("direct:event")
.log("CD event received: ${body}");

Conversely, the Cdi Event Endpoi nt <T> bean can be used to produce / fire CDI events whose event type is T, for example:

@ nj ect
Cdi Event Endpoi nt <Stri ng> cdi Event Endpoi nt ;

from("direct:event")
.to(cdi Event Endpoi nt).l og("CDI event sent: ${body}");

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_resolution
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#events

This is equivalent to writing:

@ nj ect
Event <String> event;

from("direct:event").process(new Processor() {
@verride
public void process(Exchange exchange) {
event . fire(exchange. get Body(String.class));
}
}).log("CDl event sent: ${body}");

Or using a Java 8 lambda expression:

@ nj ect
Event <String> event;

from("direct:event")
.process(exchange -> event.fire(exchange. getln().getBody(String.class)))
.log("CDl event sent: ${body}");

The type variable T (resp. the qualifiers) of a particular Cdi Event Endpoi nt <T> injection point are automatically translated into the parameterized event
type (resp. into the event qualifiers) e.g.:

@ nj ect
@ooQualifier
Cdi Event Endpoi nt <Li st <Stri ng>> cdi Event Endpoi nt ;

from("direct:event").to(cdi Event Endpoint);

voi d observeCdi Event s(@bserves @ooQualifier List<String> event) {
| ogger.info("CDl event: {}", event);

}

When multiple Camel contexts exist in the CDI container, the Camel context bean qualifiers, like @ont ext Name, can be used to qualify the Cdi Event End
poi nt <T> injection points, e.g.:

@ nj ect

@ont ext Name(" f oo")

Cdi Event Endpoi nt <Li st <Stri ng>> cdi Event Endpoi nt ;

/'l Only observes / consunes events having the @ontextName("foo") qualifier
from(cdi Event Endpoi nt) .l og(" Canel context (foo) > CDI event received: ${body}");
/1 Produces / fires events with the @ContextName("foo") qualifier
from"...").to(cdi Event Endpoint);

voi d observeCdi Event s(@bserves @ont ext Name("foo") List<String> event) {
| ogger.info("Canel context (foo) > CD event: {}", event);

}

Note that the CDI event Camel endpoint dynamically adds an observer method for each unique combination of event type and event qualifiers and solely
relies on the container typesafe observer resolution, which leads to an implementation as efficient as possible.

Besides, as the impedance between the typesafe nature of CDI and the dynamic nature of the Camel component model is quite high, it is not possible to
create an instance of the CDI event Camel endpoint via URIs. Indeed, the URI format for the CDI event component is:

cdi -event:// Payl oadType<T1,...,Tn>[?qualifiers=QualifierTypel],...[,QalifierTypeN...]]

With the authority Payl oadType (resp. the Qual i fi er Type) being the URI escaped fully qualified name of the payload (resp. qualifier) raw type followed
by the type parameters section delimited by angle brackets for payload parameterized type. Which leads to unfriendly URIs, e.g.:

cdi -event://org. apache. canel . cdi . exanpl e. Event Payl 0ad¥3Cj ava. | ang. | nt eger ¥8E?qual i fi er s=or g. apache. canel . cdi .
exanpl e. FooQual i fi er %2Cor g. apache. canel . cdi . exanpl e. Bar Qual i fi er

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_methods
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_resolution
http://camel.apache.org/component.html
http://camel.apache.org/uris.html

But more fundamentally, that would prevent efficient binding between the endpoint instances and the observer methods as the CDI container doesn't have
any ways of discovering the Camel context model during the deployment phase.

Camel XML Configuration Import

Available as of Camel 2.18

While CDI favors a typesafe dependency injection mechanism, it may be useful to reuse existing Camel XML configuration files into a Camel CDI
application. In other use cases, it might be handy to rely on the Camel XML DSL to configure its Camel context(s).

You can use the @ npor t Resour ce annotation that's provided by Camel CDI on any CDI beans and Camel CDI will automatically load the Camel XML
configuration at the specified locations, e.g.:

@ npor t Resour ce("canel -context. xm ")
class MyBean {

}

Camel CDI will load the resources at the specified locations from the classpath (other protocols may be added in the future).

Every Canel Cont ext elements and other Camel primitives from the imported resources are automatically deployed as CDI beans during the container
bootstrap so that they benefit from the auto-configuration provided by Camel CDI and become available for injection at run-time. If such an element has an
explicit i d attribute set, the corresponding CDI bean is qualified with the @Named qualifier, e.g., given the following Camel XML configuration:

<canel Cont ext id="foo0">
<endpoi nt id="bar" uri="seda:inbound">
<property key="queue" val ue="#queue"/>
<property key="concurrent Consuners" val ue="10"/>
</ endpoi nt >
<canel Cont ext />

The corresponding CDI beans are automatically deployed and can be injected, e.g.:

@ nj ect
@ont ext Name(" f oo")
Canel Cont ext context;

@ nj ect
@Nared(" bar")
Endpoi nt endpoi nt;

Note that the Canel Cont ext beans are automatically qualified with both the Named and Cont ext Nane qualifiers. If the imported Canel Cont ext element
doesn't have an i d attribute, the corresponding bean is deployed with the built-in Def aul t qualifier.

Conversely, CDI beans deployed in the application can be referred to from the Camel XML configuration, usually using the r ef attribute, e.g., given the
following bean declared:

@r oduces
@Naned(" baz")
Processor processor = exchange -> exchange. getln(). set Header ("qux", "quux");

A reference to that bean can be declared in the imported Camel XML configuration, e.g.:

<canel Cont ext id="foo0">

<r out e>
<fromuri="..."/>
<process ref="baz"/>
</rout e>

<canel Cont ext />

Transaction support
Available as of Camel 2.19

Camel CDI provides support for Camel transactional client using JTA.

https://cwiki.apache.org/confluence/display/CAMEL/Transactional+Client

That support is optional hence you need to have JTA in your application classpath, e.g., by explicitly add JTA as a dependency when using Maven:

<dependency>
<groupl d>j avax. t ransacti on</ groupl d>
<artifactld> avax.transaction-api</artifactld>
<scope>runti me</ scope>

</ dependency>

You'll have to have your application deployed in a JTA capable container or provide a standalone JTA implementation.

1 Note that, for the time being, the transaction manager is looked up as JNDI resource with the j ava: / Tr ansact i onManager key. More
flexible strategies will be added in the future to support a wider range of deployment scenarios.

Transaction policies

Camel CDI provides implementation for the typically supported Camel Tr ansact edPol i cy as CDI beans. It is possible to have these policies looked up
by name using the t r ansact ed EIP, e.g.:

cl ass MyRout eBean extends RouteBuil der {

@verride
public void configure() {
fron("activenq: queue: f o0")
.transact ed(" PROPAGATI ON_REQUI RED")
.bean("transforner")
.to("jpa:my.application.entity.Bar")
.log("${body.id} inserted");

This would be equivalent to:

cl ass MyRout eBean extends RouteBuil der {

@ nj ect
@\anmed(" PROPAGATI ON_REQUI RED")
Policy required;

@verride
public void configure() {
fron("activenq: queue: f o0")
. policy(required)
.bean("transforner")
.to("jpa:my.application.entity.Bar")
.l og("${body.id} inserted");

The list of supported transaction policy names is: PROPAGATI ON_NEVER, PROPAGATI ON_NOT_SUPPORTED, PROPAGATI ON_SUPPORTS, PROPAGATI ON_R
EQUI RED, PROPAGATI ON_REQUI RES_NEW PROPAGATI ON_NESTED, PROPAGATI ON_MANDATORY.

Transactional error handler

Camel CDI provides a transactional error handler that extends the redelivery error handler, forces a rollback whenever an exception occurs and creates a
new transaction for each redelivery. Camel CDI provides the Cdi Rout eBui | der class that exposes the t r ansact i onEr r or Handl er helper method to
enable quick access to the configuration, e.g.:

https://cwiki.apache.org/confluence/display/CAMEL/Error+Handler

cl ass MyRout eBean extends Cdi Rout eBuil der {

@verride
public void configure() {

errorHandl er (transacti onErrorHandl er ()
.set Transact i onPol i cy(" PROPAGATI ON_SUPPORTS")
. maxi munRedel i veri es(5)
. maxi munRedel i ver yDel ay(5000)
.col l'i si onAvoi dancePer cent (10)
.backOfMultiplier(1.5));

Auto-configured OSGi integration
Available as of Camel 2.17

The Camel context beans are automatically adapted by Camel CDI so that they are registered as OSGi services and the various resolvers (like Conponent
Resol ver and Dat aFor mat Resol ver) integrate with the OSGi registry. That means that the Karaf Camel commands can be used to operate the Camel
contexts auto-configured by Camel CDI, e.g.:

kar af @ oot () > canel : context-1i st
Cont ext St at us Total # Fail ed # Inflight # Uptime

canel - cdi Started 1 0 0 1 mnute

See the canel - exanpl e- cdi - osgi example for a working example of the Camel CDI OSGi integration.

Lazy Injection / Programmatic Lookup
Available as of Camel 2.17

While the CDI programmatic model favors a type-safe resolution mechanism that occurs at application initialization time, it is possible to perform dynamic /
lazy injection later during the application execution using the programmatic lookup mechanism.

Camel CDI provides for convenience the annotation literals corresponding to the CDI qualifiers that you can use for standard injection of Camel primitives.
These annotation literals can be used in conjunction with the j avax. enterpri se. i nj ect. | nst ance interface which is the CDI entry point to perform
lazy injection / programmatic lookup.

For example, you can use the provided annotation literal for the @QJr i qualifier to lazily lookup for Camel primitives, e.g. for Pr oducer Tenpl at e beans:

@ny
@ nj ect
I nst ance<Pr oducer Tenpl at e> producers;

Producer Tenpl ate i nbound = producers
.select(Uri.Literal.of ("direct:inbound"))

.get();

Or for Endpoi nt beans, e.g.:

@ny
@ nj ect
I nst ance<Endpoi nt > endpoi nts;

MockEndpoi nt out bound = endpoints

. sel ect (MockEndpoi nt. class, Uri.Literal.of ("nmock: out bound"))
-get ()

Similarly, you can use the provided annotation literal for the @Cont ext Nane qualifier to lazily lookup for Canel Cont ext beans, e.g.:

https://cwiki.apache.org/confluence/display/CAMEL/Karaf#Karaf-Karafcommands
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#typesafe_resolution
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#programmatic_lookup

@ny
@ nj ect
I nst ance<Canel Cont ext > cont exts;

Canel Cont ext context = contexts
. sel ect (Cont ext Nane. Literal . of ("fo0"))
-get();

You can also refined the selection based on the Camel context type, e.g.:

@ny
@ nj ect
I nst ance<Canel Cont ext > cont exts;

/1 Refine the selection by type
I nst ance<Def aul t Canel Cont ext > context = contexts. sel ect (Def aul t Canel Cont ext . cl ass);

/1l Check if such a bean exists then retrieve a reference

if (!context.isUnsatisfied())
context.get();

Or even iterate over a selection of Camel contexts, e.g.:

@ny
@ nj ect
| nst ance<Canel Cont ext > cont exts;

for (Canel Context context : contexts)
cont ext . set UseBr eadcrunb(true);

Maven Archetype

Among the available Camel Maven archetypes, you can use the provided canel - ar chet ype- cdi to generate a Camel CDI Maven project, e.g.:

mvn ar chet ype: generat e - Darchet ypeG oupl d=or g. apache. canel . archet ypes -DarchetypeArtifact!| d=canel - archet ype-cdi

Supported Containers

The Camel CDI component is compatible with any CDI 1.0, CDI 1.1 and CDI 1.2 compliant runtime. It's been successfully tested against the following
runtimes:

Container Version Runtime

Weld SE 1.1.28.Final CDI1.0/JavaSE7
OpenWebBeans | 1. 2.7 CDI 1.0/Java SE 7

Weld SE 2.4.1. Final CDI1.2/JavaSE 7
OpenWebBeans 1.7.0 CDI 1.2/ Java SE 7
WildFly 8. 2. 1. Final CDI 1.2/JavaEE 7
WildFly 9.0. 1. Fi nal CDI 1.2/ JavaEE 7
WildFly 10.0.0.Final CDI1.2/JavaEE7

Karaf 2.4.4 CDI 1.2/ 0OSGi 4 | PAX CDI
Karaf 3.0.5 CDI 1.2/ 0OSGi 5/ PAX CDI
Karaf 4.0.4 CDI 1.2/ OSGi 6 / PAX CDI
Examples

The following examples are available in the exanpl es directory of the Camel project:

https://cwiki.apache.org/confluence/display/CAMEL/Camel+Maven+Archetypes

Example

canel - exanpl e- cdi

canel - exanpl e- cdi - kuber net es
canel - exanpl e-cdi -netrics
canel - exanpl e- cdi - properties
camel - exanpl e- cdi - osgi

canel - exanpl e- cdi -t est

canel - exanpl e- cdi -rest -
servl et

canel - exanpl e- cdi - xm

canel - exanpl e- w dget - gadget -
cdi

canel - exanpl e- swagger - cdi

See Also

Camel CDI Testing
CDI Web site

L]
L]
® CDI ecosystem
L]

Description

lllustrates how to work with Camel using CDI to configure components, endpoints and beans

lllustrates the integration between Camel, CDI and Kubernetes

lllustrates the integration between Camel, Dropwizard Metrics and CDI

lllustrates the integration between Camel, DeltaSpike and CDI for configuration properties

A CDI application using the SIMS component that can be executed inside an OSGi container using PAX CDI
Demonstrates the testing features that are provided as part of the integration between Camel and CDI

lllustrates the Camel REST DSL being used in a Web application that uses CDI as dependency injection
framework

lllustrates the use of Camel XML configuration files into a Camel CDI application

The Widget and Gadget use-case from the EIP book implemented in Java with CDI dependency injection

An example using REST DSL and Swagger Java with CDI

Going further with CDI (See Camel CDI section)

https://cwiki.apache.org/confluence/display/CAMEL/CDI+Testing
http://www.cdi-spec.org
http://www.cdi-spec.org/ecosystem/
https://github.com/astefanutti/further-cdi

	CDI

