
Kafka Streams Discussions
This page summarizes our past feature proposals and discussions in Kafka Streams. Promoted ideas will be proposed as KIPs.

Sub-pages:
Public API Improvements
Further Join Improvements

Sub-pages:
Expose State Store Names in DSL (0.10.0)
Joins (as of 0.10.0.0)
Memory Management in Kafka Streams
Non-key KTable-KTable Joins
Serialization and Deserialization Options

Public API Improvements
Currently, the public API of Kafka Streams is not perfect. This is a summary of knows issues, and we want to collect user feedback to improve the API.

Issue User Impact / Importance Possible
Solution

Solution
User
Impact

KTable
API and
store
materiali
zation
improve
ments

Currently, KTable API offers some methods that confuse uses, because users think in terms of table instead of a changelog
stream. Also, not all KTables are materialized and the users might want to control (ie, force) when a KTable should be
materialized (for example, to allow for querying the store using interactive queries).

Importance: high

KIP-114 medium to
high

public
API
chang
es for
KTable

Topolog
yBuilder
and
KStrea
mBuilder

lea
k
int
er
nal
me
tho
ds
no
cle
an
se
pa
rati
on
of
ab
str
act
ions

Might be hard for users to understand concept.

User might be confused by verbose API (and leaking methods) they should never see.

Importance: high

KIP-120 medium

need
to use
differe
nt
imports
chang
e
pattern
to
create
topolo
gy
with
KStrea
mBuild
er

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=65143671
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=63407287
https://cwiki.apache.org/confluence/display/KAFKA/Discussion%3A+Memory+Management+in+Kafka+Streams
https://cwiki.apache.org/confluence/display/KAFKA/Discussion%3A+Non-key+KTable-KTable+Joins
https://cwiki.apache.org/confluence/display/KAFKA/Discussion%3A+Serialization+and+Deserialization+Options
https://cwiki.apache.org/confluence/display/KAFKA/KIP-114%3A+KTable+state+stores+and+improved+semantics
https://cwiki.apache.org/confluence/display/KAFKA/KIP-120%3A+Cleanup+Kafka+Streams+builder+API

Too
many
overload
s for
method
of
KStrea
mBuilde
r,
KStrea
m,
KGroup
edStrea
m,
KTable,
and
KGroup
edTable

Many methods have more than 6 overloads and it's hard for the users to understand which one to use. Furthermore, with the
verbose generics, compiler errors might be confusing and not helpful if a parameter is specified wrong (ie, I want to use
overload X, does the compiler pick the correct overload? and if yes, which parameter did I get wrong? and if no, which
parameter do I need to change so the compiler picks the correct overload?)

As we add more feature, this is getting more severe.

 Importance: high

Change to
Builder
Pattern

high

need
to
rewrite
large
parts
of
their
code

Non
consiste
nt
overloads

Some APIs have non-consistent overloaded methods that might be confusing to the user (why do I need to specify this for
overload A, but not for overload B? – why does overload X allow me to do this, but not overload Y)

Example:

for required to provide argument aggValueKGroupedStream#aggregate Serde
for has an overload without KGroupedTable#aggregate aggValueSerde

Importance: medium

Relates to
"Too many
overloads" –
could be
resolved
with a clean
builder
abstraction.

medium

user
might
need
to
rewrite
parts
of the
code
if we
deprec
ate
some
confus
ing
overlo
ads
user
code
might
get
cleaner

DSL
limits
access
to
records
and/or
record
metadata

Some interfaces like only provide the values of both records to be joined, but user might want to read the key, ValueJoiner
too. For adding the key, we loose the guarantee, that the key is not modified though. (There are more similar examples, where
the key is not accessible.)

Record metadata (like offset, timestamp, partition, topic) is not accessible in DSL interfaces.

 Importance: low

Change
interfaces,
RichFunction
s,

Use process
/transform

low

this is
more
about
improv
ing
the
API
and/or
adding
new
features

Missing
public
API

Some very helpful classes, that are currently in package could get added to public API. For example, windows and internal
some serde classes.

Importance: low

Move
classes to
different
package.

low

we
only
add
new
stuff

Window
(s) API get rid of minimum retention time (that is a performance improvement that confuses many users).

remove some leaking internal APIs

Importance: low

 low

Improve
Streams
Config
API

API is verbose and with intermixed consumer and producer configs hard to use correctly.

Importance: low

Builder
pattern

medium

users
need
to
rewrite
the
config
code

Process
orConte
xt to
verbose

ProcessorContext give access to method that cannot be called. This is hard to reason about for users.

Importance: low

Split
ProcessorCo
ntext and
extract
RecordConte
xt

low

most
user
are
expect
ed to
use
mainly
DSL

low-
level
API
integrati
on into
DSL

Currently, low-level API is integrated into DSL via process()/transform() and transformValues(). Those abstraction are not
perfectly defined and confusing to users.

Importance: medium

Major
redesign

medium

most
user
are
expect
ed to
use
mainly
DSL

Low-
level
API in
DSL vs.
"advanc
ed DSL"

Currently, low-level API is used to empower the user to do anything within DSL. This approach is questionable to some extents.
For example, if a user wants to do a stateful 1:1 transformation of records, she must implement interface, thus Transformer
has a lot of boiler plate code to access the actual state via the context and needs to implement non related methods like
punctuate(). A DSL method like with interface might be easier to use. statefulMap #map(K key, V Value, S state)
The question is, if DSL can provide more DSL like methods to allow more advance computations without forcing the user to too
low-level.

Importance: medium

Major
redesign

medium

it's
about
adding
new
metho
d so
existin
g
code
should
not be
affected

potential
ly non-
partition
ed input
for
stateful
DSL
operatio
ns

process(), , and all accept a stat. In order to allow for scaling, state is usually partitioned transform() transformValue()
by key. However, Streams does not enforce a correct partitioning (via a call to) and thus, data might not be groupByKey
partitioned correctly for those three operators. The use need to be aware of this, and do a manual call to right now through()
to ensure correct partitioning.

 Importance: medium

Educate
users about
this issues in
the docs
explicitly (if
users go
with low
level
operators,
they also
have to take
more
responsibility
by
themselves
to get it right)

or

allow .
process()
/transform()
/transformVal
ues() (that
do have a
state) only
on KGroupe

 dStream

medium

most
user
are
expect
ed to
use
mainly
DSL

Simplify
"messag
e
callback
" use
case

From :mailing list

2. For the processor api, I think this api is mostly not for end users. However this are a couple cases where it might make sense
to expose it. I think users coming from Samza, or JMS's MessageListener (https://docs.oracle.com/javaee/7/api/javax/jms

) understand a simple callback interface for message processing. In fact, people often ask why Kafka's /MessageListener.html
consumer doesn't provide such an interface. I'd argue we do, it's KafkaStreams. The only issue is that the processor API
documentation is a bit scary for a person implementing this type of api. My observation is that people using this style of API
don't do a lot of cross-message operations, then just do single message operations and use a database for anything that spans
messages. They also don't factor their code into many MessageListeners and compose them, they just have one listener that
has the complete handling logic. Say I am a user who wants to implement a single Processor in this style. Do we have an easy
way to do that today (either with the .transform/.process methods in kstreams or with the topology apis)? Is there anything we
can do in the way of trivial helper code to make this better? Also, how can we explain that pattern to people? I think currently
we have pretty in-depth docs on our apis but I suspect a person trying to figure out how to implement a simple callback might
get a bit lost trying to figure out how to wire it up. A simple five line example in the docs would probably help a lot. Not sure if
this is best addressed in this KIP or is a side comment.

Add some
new
methods to
TopologyBuil
der or add a
new high
level builder
next to
KStreamBuil
der.

low

would
add
new
API
and
not
affect
current
users

http://search-hadoop.com/m/Kafka/uyzND1xrLTk2z9byW?subj=Re+DISCUSS+KIP+120+Cleanup+Kafka+Streams+builder+API
https://docs.oracle.com/javaee/7/api/javax/jms/MessageListener.html
https://docs.oracle.com/javaee/7/api/javax/jms/MessageListener.html

Process
or API
"clumsy"
to use

In Processor API, sources, processors, and sinks are solely connected to each other (ie, by using String). Each time, a by name
processor or sink should be downstream to a source/processor user need to specify the corresponding name. It might be easier
to allow to use the the actual "Processor Object" that should be used.

Current:

builder.addSource("soureNode", "sourceTopic").addProcessor("processor", ..., "sourceNode");
// builder returns TopologyBuilder to allow chaining

Basic Idea:

Source s = builder.addSource("sourceNode", "sourceTopic");
Processor p = builder.addProcessor("processor", ..., s); // the source object s replaces the
name "sourceTopic");

The main questions we need to consider is, if we don't limit the user, and how intuitive the API will get. It's should be a low level
API and there is no need to get too close to patterns as offered in the DSL.

Importance: low

We would
need to
expose the
concept on a
"node" in Top
ologyBuild

.er

If we allow
for this, we
could
actually get
rid of all
names (and
only have
them as
optional
parameters;
if not
specified,
the name is
generated
and can be
retrieved via
Source#nam
e()):

Source s
= builder.
addSource
("sourceTo
pic");
Processor
p =
builder.
addProcess
or(...,
s); //
the
source
object s
replaces
the name
"sourceTop
ic");

We could
even allow
chaining
(that would
implicitly
connect
nodes):

builder.
addSource
("sourceTo
pic).
addProcess
or(...);
// no
name for
neither
Source no
Processor
and
Processor
consumes
from
Source

 low

this
would
add
"synta
ctic
sugar"

Store.
close()
availabl
e within
Process
or,
Transfor
mer,
and
ValueTr
ansform
er

Currently, user can call within their user code. However, Streams will handle the stores including closing store.close()
store automatically. Thus, user should not be able to call this method. For custom store, users only need to implement this
method. Currently, we have a JavaDoc hint for this, but it would be better to get it into the API directly.

Importance: low

Spilt
interface into
two
interfaces,
and hand
the "limited"
interface that
does not
offer .close()
when a user
retries a
store from
the context
within an
operator.

Should not
affect
anybody,
as nobody
should call .
close()
anyway –
otherwise
their code
is broken in
the first
place.

Improve
pattern
to build
custom
stores

Building custom stores is a little hard with the current API, and we should simplify this.

This requires a KIP that should cover a fix for - KAFKA-4953 Getting issue details...
STATUS

Partial
Redesign.

Should only
affect
advanced
/power
users.

KTable.
toStream

KTable.toStream might have a confusing name. Consider KTable.getChangelog() or .toChangelog(). Needs
discussion.

Improve
brachning

It's clumsy to use as handling the returned array requires to do "index mapping" and breaks the flow.branch() Cf. https://iss
ues.apache.
org/jira
/browse
/KAFKA-
5488

Low
impact. We
would only
add a new
branching
API.

Many of the above issues are related to each other and/or overlap. This, also reflects in a bunch of JIRAs that are all related to API changes:

https://issues.apache.org/jira/browse/KAFKA-4125 (Rich Functions)
https://issues.apache.org/jira/browse/KAFKA-3455 (valid?)
https://issues.apache.org/jira/browse/KAFKA-4713 (ProcessorContext.init)
https://issues.apache.org/jira/browse/KAFKA-4218 (add key to ValueTransformer – ie. mapValues and transformValues)
https://issues.apache.org/jira/browse/KAFKA-4217 (add flatTransform() and flatTransformValues() – seem invalid to me)
https://issues.apache.org/jira/browse/KAFKA-4346 (add foreachValue to KStream)
https://issues.apache.org/jira/browse/KAFKA-3745 (add key to ValueJoiner)
https://issues.apache.org/jira/browse/KAFKA-4726 (add key to ValueMapper)
https://issues.apache.org/jira/browse/KAFKA-4713 (Processors cannot call public methods on ProcessorContext from the init method)

 (Improve branching)https://issues.apache.org/jira/browse/KAFKA-5488

Thus, to tackle this issue, it seems to be a good idea to break it down into groups of issues, and do a KIP per group to get a overall sound design.

Further Join Improvements
In order to get as close as possible to SQL-like join semantics, KStream-KStream left/outer join could be further improved. Right now, records with null
key are dropped – however, for left/outer join this "limits" the join result unnecessarily. If we follow SQL semantics, it holds that , thus NULL NULL!=NULL
we know that a -key record will not join anyway – thus, there is not need that -key records are co-located to each other and thus, we can just NULL null
call with the record and as second parameter.ValueJoiner null

We can apply the same semantics to KStream-KTable left-join.

Not sure about KTable-KTable join though. IIRC, a changelog topic does not allow for -keys in the first places, thus the scenario does not apply.null

Not sure is this is a simple JIRA or if a KIP is required...?

https://issues.apache.org/jira/browse/KAFKA-4953
https://issues.apache.org/jira/browse/KAFKA-5488
https://issues.apache.org/jira/browse/KAFKA-5488
https://issues.apache.org/jira/browse/KAFKA-5488
https://issues.apache.org/jira/browse/KAFKA-5488
https://issues.apache.org/jira/browse/KAFKA-5488
https://issues.apache.org/jira/browse/KAFKA-5488
https://issues.apache.org/jira/browse/KAFKA-4125
https://issues.apache.org/jira/browse/KAFKA-3455
https://issues.apache.org/jira/browse/KAFKA-4713
https://issues.apache.org/jira/browse/KAFKA-4218
https://issues.apache.org/jira/browse/KAFKA-4217
https://issues.apache.org/jira/browse/KAFKA-4346
https://issues.apache.org/jira/browse/KAFKA-3745
https://issues.apache.org/jira/browse/KAFKA-4726
https://issues.apache.org/jira/browse/KAFKA-4713
https://issues.apache.org/jira/browse/KAFKA-5488

	Kafka Streams Discussions

