
1.

2.

DagRun Refactor (Scheduler 2.0) [ARCHIVED]
Tracking:

 - Jira project doesn't exist or you don't have permission to view AIRFLOW-14

it.

https://github.com/airbnb/airflow/compare/master...jlowin:dagrun-refactor

Introduction

Tracking:
Introduction
Description of New Workflow

Issues
Classes

DagRun
Description
Methods

DAG
Methods

DagRunJob
Description
Methods

SchedulerJob
Description
Methods

BackfillJob
Description
Methods

The primary issue with DAG execution is that there are two completely separate execution avenues in Airflow: SchedulerJob and BackfillJob. DagRuns
were recently added to track DAG execution state but they are used inconsistently, adding to the confusion. To put it briefly, there are three competing
issues:

Scheduler uses DagRun and runs any tasks in RUNNING DagRuns, but also runs any queued tasks regardless of whether they are in an active
DagRun or not. Backfill does not use DagRuns and loops over the tasks in its DAG, brute forcing them into the executor until they finish or fail.
Therefore they interfere with each other. Scheduler takes a lock on the DAG it's running, but Backfill ignores locks. It might be ok if we could
guarantee that Scheduler and Backfill weren't run simultaneously (even though we can't!), but operators like use Backfill SubDagOperator
internally, meaning they must play nicely together.
DagRuns were originally intended to track the state of a DAG's execution, just as TaskInstances do for tasks. However, the implementation is not
complete. DagRuns must be unique for each combination of , but nonetheless allow arbitrary attributes like a(DAG, execution_date) run_id
nd . If there can only be one DagRun per execution date, and that DagRun is marked as , then the external_trigger external_trigger
scheduler won't be able to create a non- DagRun for the same date! (I'm actually surprised this hasn't bitten anyone yet... external_trigger
probably because DagRuns are not heavily used outside the Scheduler.)

What's needed is to formalize the concept of a DagRun and make it the canonical way to execute a DAG and track the state of that DAG's execution, just
as we do for TaskInstances.

This refactor does just that:

Promote DagRun as a first-class Airflow object
Remove attributes that didn't makes sense, like -- in a pragmatic sense, we don't really care, and the uniqueness external_trigger
constraint on (DAG, execution_date) means this is irrelevent anyway
DagRuns can manage their own state
DagRuns can be locked or unlocked by a specific , which guarantees that only one job is trying to execute the DagRun at a timelock_id

Create a DagRunJob which is used to manage the execution of one or more DagRuns
Implement both SchedulerJob and BackfillJob as subclasses of DagRunJob

The only difference is how they acquire DagRuns (Scheduler queries for all active DagRuns, BackfillJob works through a pre-specified
list)

Move much of the existing logic for figuring out the next schdeuled run from the Scheduler to the DAG, where it belongs.
The Scheduler is just a special type of DagRunJob. Users may want to implement their own "Schedulers" or their own scheduling logic,
and by moving it to the DAG that becomes possible.

Description of New Workflow

 - Jira project doesn't exist or you don't have permission to view AIRFLOW-14

it.

https://issues.apache.org/jira/browse/AIRFLOW-14?src=confmacro
https://github.com/airbnb/airflow/compare/master...jlowin:dagrun-refactor

1.
2.
3.
4.

1.
2.

3.
4.
5.

DagRuns represent the state of a DAG at a certain point in time (To run a DAG – or to manage the perhaps they should be called DagInstances?).
execution of a DAG – a DagRun must first be created. This can be done manually (simply by creating a DagRun object) or automatically, using methods
like . Therefore, both scheduling new runs OR introducing ad-hoc runs can be done by any process at any time, simply by creating dag.schedule_dag()
the appropriate object.

Just creating a DagRun is not enough to actually run the DAG (just as creating a TaskInstance is not the same as actually running a task). We need a Job
for that. The DagRunJob is fairly simple in structure. It maintains a set of DagRuns that it is tasked with executing, and loops over that set until all the
DagRuns either succeed or fail. New DagRuns can be passed to the job explicitly via or by defining its DagRunJob.submit_dagruns() DagRunJob.

 method, which is called during each loop. When the DagRunJob is executing a specific DagRun, it locks it. Other DagRunJobs will collect_dagruns()
not try to execute locked DagRuns. This way, many DagRunJobs can run simultaneously in either a local or distributed setting, and can even be pointed at
the same DagRuns, without worrying about collisions or interference.

The basic DagRunJob loop works like this:

refresh dags
collect new dagruns
process dagruns (including updating dagrun states for success/failure)
call executor/own heartbeat

By tweaking the DagRunJob, we can easily recreate the behavior of the current SchedulerJob and BackfillJob. The Scheduler simply runs forever and
picks up ALL active DagRuns in ; Backfill generates DagRuns corresponding to the requested start/end dates and submits them to collect_dagruns()
itself prior to initiating its loop.

Changes
(major API changes are tracked in)UPDATING.md
DagRuns

A DagRun represents the execution of a certain DAG on a date, just as a TaskInstance represents the execution of a certain task on a
date. As such, we don't want multiple DagRuns for the same dag/date, because they would all just point at the same taskinstances and
therefore have no additional value.

This appears to already be enforced in Airflow via unique constraint but needs to be fleshed out. Right now it doesn't create any
issues because only the Scheduler creates DagRuns, and only in sequence, but if Backfill also created a DagRun it could
create a conflict with an existing scheduled DagRun.

If a DagRun uniquely identifies a dag/date, then a few current DagRun attributes become meaningless, in particular id, run_id, and
external_trigger. For example, we don't need a run_id if (dag_id, execution_date) is sufficient to identify a DagRun. These fields would be helpful
if more than one DagRun could point at a certain day, but that has never been allowed and is simply more formally enforced in Scheduler 2.0.

** The parameter should probably be rethought as well, for the same reason. It's tied to the method of execution. **conf
DagRuns can be locked (and unlocked). DagRunJob locks DagRuns when it's trying to execute them, and won't try to execute DagRuns
if they are locked. This means multiple DagRunJobs can all run at the same time without stepping on each other. In particular, a
BackfillJob might create DagRuns that are actually executed by the Scheduler. This sort of cooperation is ok -- DagRunJobs don't care h

 their DagRuns get executed, just that they do.ow
DagRuns have a "run" method which loads up all the TaskInstances they cover and tries to execute them (one time).

DAGs

schedule_dag() The logic for scheduling a DAG moves from the Scheduler to the DAG itself, where it can be more easily reused.
update_dagrun_states() The DAG can review its outstanding DagRuns and update their states (Pending -> Active, Active ->
Success/Failed)

Scheduler behavior

Scheduling logic

if == @once and has never been scheduled, run the dag nowschedule_interval
PREVIOUSLY:if the DAG has never been scheduled, see if it's ever been run at all. If it has run, the first scheduled date is 4 sc

 prior to that run. If it's never run, use the earliest task start date (but not the dag start date?)hedule_intervals

NOW: if the DAG has never been scheduled, figure out the first date that SHOULD have been scheduled (probably dag.
)start_date + schedule_interval

if the DAG has been scheduled, add to the last scheduled dateschedule_interval
make sure the next run date is >= the dag's start_date
make sure the next run date PLUS is <= now, indicating that the entire period has passedschedule_interval

In addition to scheduling new DagRuns, Scheduler tries to run ANY active DagRun (possibly restricted to specific dag_ids). This means
Scheduler will try to run backfills and subdags, if they have created DagRuns.
Scheduler used to prioritize ALL queued tasks. Now it only prioritizes tasks that correspond to its active DagRuns (which could
potentially mean ALL, but not necessarily)

Issues

Can't get DagRunModelView to create new DagRuns (mostly because I don't know flask well...)

http://UPDATING.md

Classes
Notable additions and changes.

DagRun

Description

DagRun has been updated a lot. The new table looks like this:

__tablename__ = dag_run" "

dag_id Column(String(),)= ID_LEN primary_key=True
execution_date Column(DateTime, func.now(),)= default= primary_key=True
start_date Column(DateTime, func.now())= default=
end_date Column(DateTime)=
state Column(String())= 50
conf Column(PickleType)=
lock_id Column(Integer)=

__table_args__ (=
 Index(, dag_id, execution_date,),dr_dag_date' ' unique=True
)

Methods

comparison operators for sorting and inclusion in sets(==, <, ...)
refresh_from_db

Analogous to TaskInstance.refresh_from_db()
set_state()

Logic for changing the DagRun's state. For example, moving from PENDING -> RUNNING sets the start_date; moving from RUNNING -
> SUCCESS sets the end_date

set_conf()
Update the conf object. Conf may need to be rethought -- it seems at odds with the uniqueness constraint.

lock()
Marks the DagRun as locked by a certain . Used by DagRunJob.lock_id

unlock()
Marks the DagRun as unlocked

run()
Runs the DagRun by submitting all eligible tasks to the executor. Does NOT loop or make sure the DagRun completes; this is just one
pass through the tasks. Returns a progress object with detailed information but what tasks were able to run.

DAG

Methods

on_schedule()
checks if a date is on the DAG's schedule or not

schedule_dag()
Formerly a method of SchedulerJob, this method creates new DagRuns according to the DAG's schedule.

update_dagrun_states()
Formerly , this method used to BOTH update dagrun_states AND return DagRuns for the Scheduler. Now it get_active_dagruns()
just updates states.

DagRunJob

Description

DagRunJob is a Job that has methods for executing and managing DagRuns. It has the following structure:_execute

def ():_execute self

 .executor.start()self

 i = 0
 .dagruns:while self
 .refresh_dags((i .refresh_dags_every))self full_refresh= % self == 0
 .collect_dagruns()self
 .process_dagruns()self
 .executor.heartbeat()self
 .heartbeat()self
 i += 1

 .executor.end()self

Methods

submit_dagruns()

Submit DagRuns for execution by placing them in self.dagruns
collect_dagruns()

Collects DagRuns from the database and submits them for execution. The base DagRunJob collects any unfinished DagRuns that have
been locked by its own . Under most circumstances, no DagRuns will meet that criteria -- but it provides an automated mechanism for id
jobs to pass DagRuns around.

The Scheduler uses this method to collect ALL unfinished DagRuns.
refresh_dags()

Reloads the DagBag
process_dagruns()

Attempts to run any DagRuns in . While DagRuns are being executed, the DagRunJob locks them so no other self.dagruns
DagRunJob will try to run them. DagRuns that are or are removed from . After running all the FAILED SUCCESS self.dagruns
DagRuns, calls and for every dag in the dagbag.prioritize_queued() dag.update_dagrun_states()

prioritize_queued()

Collects all queued tasks across all DagRuns in and attempt to run them in the order implied by their global priority self.dagruns
weights.

manage_slas()

Manage SLAs and send notification emails

SchedulerJob

Description

SchedulerJob is a subclass of DagRunJob with the following . Note that the from DagRunJob is the loop criteria and the _execute only real difference
call to . The Scheduler runs in a loop, just as the current Scheduler does, exiting when is hit or possibly never.schedule_dags() num_runs

self.executor.start()

i = 0
 .num_runs .num_runs i:while not self or self >

 :try
 loop_start_dttm datetime.now()=
 .logger.info()self Starting scheduler loop...' '
 :try
 .refresh_dags(self
 (i .refresh_dags_every))full_refresh= % self == 0
 .schedule_dagruns()self
 .collect_dagruns()self
 .process_dagruns()self
 .manage_slas()self

 e:except Exception as
 .logger.exception(e)self

 .logger.info()self Done scheduling, calling heartbeat.' '

 .executor.heartbeat()self
 .heartbeat()self
 e:except Exception as
 .logger.exception(e)self

 i += 1

.executor.end()self

Methods

schedule_dags()

Examine all Dags (either in a specific list or in the) and schedule new dagruns.DAGS_FOLDER
collect_dagruns()

The same as the basic DagRunJob, but includes all active DagRuns rather than only ones assigned to the job. In other words the
Scheduler greedily tries to run all DagRunJobs. However, the locking mechanism means that it won't interfere with any other Jobs and if
a DagRun is marked finished, it will stop trying to run it.

BackfillJob

Description

BackfillJob is a subclass of DagRunJob with this structure:_execute

self.heartbeat()
.executor.start()self

runs [=
 DagRun(.dag.dag_id, dttm)dag_id=self execution_date=
 dttm .dag.date_range(for in self
 .bf_start_date, .bf_end_date)]start_date=self end_date=self

.submit_dagruns(runs)self

.target_runs runsself =

 .dagruns:while self
 .collect_dagruns()self
 .process_dagruns()self
 .executor.heartbeat()self
 .heartbeat()self

 progress .get_progress()= self
 .logger.info(.join([self | ' '
 ,[backfill progress:]' {pct_complete }:.1% '
 ,total dagruns: ' {total_dagruns}'
 ,total tasks: ' {total_tasks}'
 ,finished: ' {finished}'
 ,succeeded: ' {succeeded}'
 ,skipped: ' {skipped}'
 ,failed: ' {failed}'
]).format(progress))**

.executor.end()self

BackfillJob prints progress, like this:

[2016-04-28 18:26:00,011] {jobs.py:912} INFO - [backfill progress: 0.0%] | total dagruns: 1 | total tasks: 2 | finished: 0 | succeeded: 0 | skipped: 0 | failed: 0

Methods

The BackfillJob adds no new methods; its only difference from DagRunJob is that it generates and submits a list of DagRuns to itself.

	DagRun Refactor (Scheduler 2.0) [ARCHIVED]

