SQL Component

SQL Component

The sql: component allows you to work with databases using JDBC queries. The difference between this component and JDBC component is that in case
of SQL the query is a property of the endpoint and it uses message payload as parameters passed to the query.

This component uses spr i ng- j dbc behind the scenes for the actual SQL handling.

Maven users will need to add the following dependency to their pom xmi for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -sql </artifactld>
<ver si on>x. x. x</ ver si on>
<l-- use the sane version as your Canel core version -->
</ dependency>

The SQL component also supports:

® a JDBC based repository for the Idempotent Consumer EIP pattern. See further below.
® a JDBC based repository for the Aggregator EIP pattern. See further below.

URI format

From Camel 2.11 onwards this component can create both consumer (e.g. f r on()) and producer endpoints (e.g. t o()).
In previous versions, it could only act as a producer.

This component can be used as a Transactional Client.

The SQL component uses the following endpoint URI notation:

sql :select * fromtable where id=# order by nane[?opti ons]

From Camel 2.11 onwards you can use named parameters by using :#nane_of _t he_par anet er style as shown:

sql :select * fromtable where id=:#nmyld order by name[?opti ons]

When using named parameters, Camel will lookup the names from, in the given precedence:
1. from message body ifitsaj ava. uti |l . Map
2. from message headers

If a named parameter cannot be resolved, then an exception is thrown.

From Camel 2.14 onward you can use Simple expressions as parameters as shown:

sql:select * fromtable where id=: #${property.nyld} order by nanme[?opti ons]

Notice that the standard ? symbol that denotes the parameters to an SQL query is substituted with the # symbol, because the ? symbol is used to specify
options for the endpoint. The ? symbol replacement can be configured on endpoint basis.

From Camel 2.17 onwards you can externalize your SQL queries to files in the classpath or file system as shown:

sql : cl asspat h: sql / nyquery. sql [?opti ons]

And the myquery.sql file is in the classpath and is just a plain text

select * fromtable where id = :#${property.nyld} order by nane

In the file you can use multilines and format the SQL as you wish. And also use comments such as the — dash line.

https://cwiki.apache.org/confluence/display/CAMEL/JDBC
https://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator2
http://camel.apache.org/transactional-client.html

You can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

Options

Option

bat ch

dat aSou
r ceRef

dat aSou
rce

pl aceho
| der

usePl ac
ehol der

t enpl at
e. <XXX>

al | owmNa
nedPar a
neters

process
ingStra
tegy

prepare
St at ene
nt Strat

egy

consume
r.del ay

consume
r.

initial
Del ay

consume
r
useFi xe
dDel ay

maxMess
agesPer
Pol |

uselter
at or

rout eEm
pt yResu
It Set

onConsu
e

onConsu
neFai | ed

onConsu
neBat ch
Conpl et e

expecte
dUpdat e
Count

br eakBa
t chOnCo
nsumeFa
il

Type Default

bool ean fal se

String null
String null
String #

bool ean true

nul |

bool ean true

| ong 500

| ong 1000

bool ean fal se

bool ean true

bool ean fal se

String null
String null
String null
int -1

bool ean fal se

Description

Camel 2.7.5, 2.8.4 and 2.9: Execute SQL batch update statements. See notes below on how the treatment of the inbound message
body changes if this is setto t r ue.

Deprecated and will be removed in Camel 3.0: Reference to a Dat aSour ce to look up in the registry. Use dat aSour ce=#t heNane
instead.

Camel 2.11: Reference to a Dat aSour ce to look up in the registry.

Camel 2.4: Specifies a character that will be replaced to ? in SQL query. Notice, that it is simple St ri ng. r epl aceAl | () operation
and no SQL parsing is involved (quoted strings will also change). This replacement is only happening if the endpoint is created using
the Sgl Conponent . If you manually create the endpoint, then use the expected ? sign instead.

Camel 2.17: Sets whether to use placeholder and replace all placeholder characters with ? sign in the SQL queries.

Sets additional options on the Spring JdbcTenpl at e that is used behind the scenes to execute the queries. For instance, t enpl at e
. maxRows=10. For detailed documentation, see the JdbcTemplate javadoc documentation.

Camel 2.11: Whether to allow using named parameters in the queries.

Camel 2.11: SQL consumer only: Allows to plugin to use a custom or g. apache. canel . conponent . sql .
Sql Processi ngSt r at egy to execute queries when the consumer has processed the rows/batch.

Camel 2.11: Allows to plugin to use a custom or g. apache. canel . conponent . sql . Sql Pr epar eSt at enent St r at egy to
control preparation of the query and prepared statement.

Camel 2.11: SQL consumer only: Delay in milliseconds between each poll.

Camel 2.11: SQL consumer only: Milliseconds before polling starts.

Camel 2.11: SQL consumer only: Setto t r ue to use fixed delay between polls, otherwise fixed rate is used. See ScheduledExecuto
rService in JDK for details.

Camel 2.11: SQL consumer only: An integer value to define the maximum number of messages to gather per poll. By default, no
maximum is set.

Camel 2.11: SQL consumer only: If t r ue each row returned when polling will be processed individually. If f al se the entire j ava.
util.List ofdatais setas the IN body. Notice in Camel 2.15.x or older you need to prefix this option with consumer., eg consumer.
uselterator=true.

Camel 2.11: SQL consumer only: Whether to route a single empty Exchange if there was no data to poll. Notice in Camel 2.15.x or
older you need to prefix this option with consumer., eg consumer.uselterator=true.

Camel 2.11: SQL consumer only: After processing each row then this query can be executed, if the Exchange was processed
successfully, for example to mark the row as processed. The query can have parameter. Notice in Camel 2.15.x or older you need to
prefix this option with consumer., eg consumer.uselterator=true.

Camel 2.11: SQL consumer only: After processing each row then this query can be executed, if the Exchange failed, for example to
mark the row as failed. The query can have parameter. Notice in Camel 2.15.x or older you need to prefix this option with consumer.,
eg consumer.uselterator=true.

Camel 2.11: SQL consumer only: After processing the entire batch, this query can be executed to bulk update rows etc. The query
cannot have parameters. Notice in Camel 2.15.x or older you need to prefix this option with consumer., eg consumer.uselterator=true.

Camel 2.11: SQL consumer only: If using consumer . onConsune then this option can be used to set an expected number of rows
being updated. Typically you may set this to 1 to expect one row to be updated. Notice in Camel 2.15.x or older you need to prefix
this option with consumer., eg consumer.uselterator=true.

Camel 2.11: SQL consumer only: If using consuner . onConsure and it fails, then this option controls whether to break out of the
batch or continue processing the next row from the batch. Notice in Camel 2.15.x or older you need to prefix this option with
consumer., eg consumer.uselterator=true.

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

al waysP | bool ean fal se Camel 2.11: SQL producer only: If enabled then the popul at eSt at ement method from or g. apache. canel . conponent . sql .

opul ate Sql Prepar eSt at enent St r at egy is always invoked, also if there is no expected parameters to be prepared. When this is f al se

St at eme then the popul at eSt at ement is only invoked if there is 1 or more expected parameters to be set; for example this avoids reading

nt the message body/headers for SQL queries with no parameters.

separat | char s Camel 2.11.1: The separator to use when parameter values is taken from message body (if the body is a String type), to be inserted
or at # placeholders. Notice if you use named parameters, then a Map type is used instead.

outputT String SelectL @ Camel 2.12.0: outputType='SelectList', for consumer or producer, will output a List of Map. Sel ect One will output single Java object
ype i st in the following way:
a) If the query has only single column, then that JDBC Column object is returned. (such as SELECT COUNT(*) FROM PRQIECT
will return a Long object.
b) If the query has more than one column, then it will return a Map of that result.
c) If the out put Cl ass is set, then it will convert the query result into an Java bean object by calling all the setters that match the
column names. It will assume your class has a default constructor to create instance with.
d) If the query resulted in more than one rows, it throws an non-unique result exception.

From Camel 2.14.1 onwards the SelectList also supports mapping each row to a Java object as the SelectOne does (only step c).
From Camel 2.18 onwards there is a new StreamList outputType that streams the result of the query using an Iterator. It can be used

with the Splitter EIP in streaming mode to process the ResultSet in streaming fashion. This StreamList do not support batch mode,
but you can use outputClass to map each row to a class.

outputC String null Camel 2.12.0: Specify the full package and class name to use as conversion when out put Type=Sel ect One.

| ass

outputH String null Camel 2.15: To store the result as a header instead of the message body. This allows to preserve the existing message body as-is.

eader

paramet int 0 Camel 2.11.2/2.12.0 If set greater than zero, then Camel will use this count value of parameters to replace instead of querying via

er sCount JDBC metadata API. This is useful if the JDBC vendor could not return correct parameters count, then user may override instead.

noop bool ean fal se Camel 2.12.0 If set, will ignore the results of the SQL query and use the existing IN message as the OUT message for the
continuation of processing

useMess | bool ean fal se Camel 2.16: Whether to use the message body as the SQL and then headers for parameters. If this option is enabled then the SQL

ageBody in the uri is not used. The SQL parameters must then be provided in a header with the key Canel Sql Par anet er s. This option is

For Sql only for the producer.

transac bool ean fal se Camel 2.16.2: SQL consumer only:Enables or disables transaction. If enabled then if processing an exchange failed then the

ted consumer break out processing any further exchanges to cause a rollback eager

Treatment of the message body

The SQL component tries to convert the message body to an object of j ava. uti | . |t erat or type and then uses this iterator to fill the query parameters
(where each query parameter is represented by a # symbol (or configured placeholder) in the endpoint URI). If the message body is not an array or
collection, the conversion results in an iterator that iterates over only one object, which is the body itself.

For example, if the message body is an instance of j ava. uti | . Li st, the first item in the list is substituted into the first occurrence of # in the SQL query,
the second item in the list is substituted into the second occurrence of #, and so on.

If bat ch is setto t r ue, then the interpretation of the inbound message body changes slightly — instead of an iterator of parameters, the component
expects an iterator that contains the parameter iterators; the size of the outer iterator determines the batch size.

From Camel 2.16 onwards you can use the option useMessageBodyForSq|l that allows to use the message body as the SQL statement, and then the SQL
parameters must be provided in a header with the key SglConstants.SQL_PARAMETERS. This allows the SQL component to work more dynamic as the
SQL query is from the message body.

Result of the query

For sel ect operations, the result is an instance of Li st <Map<Stri ng, Obj ect >> type, as returned by the JdbcTemplate.queryForList() method. For up
dat e operations, the result is the number of updated rows, returned as an | nt eger .

By default, the result is placed in the message body. If the outputHeader parameter is set, the result is placed in the header. This is an alternative to using
a full message enrichment pattern to add headers, it provides a concise syntax for querying a sequence or some other small value into a header. Itis
convenient to use outputHeader and outputType together:

fronm("jns: order.inbox")
.to("sql:select order_seq.nextval from dual ?out put Header =Or der | d&out put Type=Sel ect One")
.to("jns: order. booki ng");

Using StreamList

From Camel 2.18 onwards the producer supports outputType=StreamList that uses an iterator to stream the output of the query. This allows to process the
data in a streaming fashion which for example can be used by the Splitter EIP to process each row one at a time, and load data from the database as
needed.

https://cwiki.apache.org/confluence/display/CAMEL/Splitter
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html#queryForList(java.lang.String,%20java.lang.Object%91%93)
https://cwiki.apache.org/confluence/display/CAMEL/Splitter

fron("direct:w thSplitNddel")
.to("sqgl:select * fromprojects order by id?output Type=StreanLi st &ut put C ass=or g. apache. canel . conponent . sql .
Proj ect Mbdel ")
.to("l og: streant')
.split(body()).stream ng()
.to("log:row")
.to("nmock:result")
.end();

Header values

When performing updat e operations, the SQL Component stores the update count in the following message headers:

Header Description

Canel Sql Upda | The number of rows updated for updat e operations, returned as an | nt eger object. This header is not provided when using
t eCount outputType=StreamList.

Canel Sql RowC | The number of rows returned for sel ect operations, returned as an | nt eger object. This header is not provided when using
ount outputType=StreamlList.

Canel Sql Query Camel 2.8: Query to execute. This query takes precedence over the query specified in the endpoint URI. Note that query
parameters in the header are represented by a ? instead of a # symbol

When performing i nsert operations, the SQL Component stores the rows with the generated keys and number of these rown in the following message
headers (Available as of Camel 2.12.4, 2.13.1):

Header Description

Canel Sql Gener at edKeysRowCount ' The number of rows in the header that contains generated keys.

Canel Sql Gener at edKeyRows Rows that contains the generated keys (a list of maps of keys).

Generated keys

Available as of Camel 2.12.4, 2.13.1 and 2.14

_If you insert data using SQL INSERT, then the RDBMS may support auto generated keys. You can instruct the SQL producer to return the generated keys
?ﬁgsctig;.set the header Canel Sql Ret ri eveGener at edKeys=t r ue. Then the generated keys will be provided as headers with the keys listed in the
table above.

You can see more details in this unit test.
Configuration
You can now set a reference to a Dat aSour ce in the URI directly:

select * fromtable where id=# order by nane?dat aSour ce=nyDS

Sample

In the sample below we execute a query and retrieve the result as a Li st of rows, where each row is a Map<St ri ng, Obj ect > and the key is the
column name.

First, we set up a table to use for our sample. As this is based on an unit test, we do it in java:

db = new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. DERBY) . addScri pt ("sql / cr eat eAndPopul at eDat abase. sql ") . bui I d();

The SQL script cr eat eAndPopul at eDat abase. sql we execute looks like as described below:

https://git-wip-us.apache.org/repos/asf?p=camel.git;a=blob_plain;f=components/camel-sql/src/test/java/org/apache/camel/component/sql/SqlGeneratedKeysTest.java;hb=3962b23f94bb4bc23011b931add08c3f6833c82e

create table projects (id integer primary key, project varchar(10), license varchar(5));

insert into projects values (1, 'Canel', 'ASF);
insert into projects values (2, 'AMJ, 'ASF);
insert into projects values (3, 'Linux', 'XXX);

Then we configure our route and our sql component. Notice that we use a di r ect endpoint in front of the sql endpoint. This allows us to send an
exchange to the di r ect endpoint with the URI, di r ect : si npl e, which is much easier for the client to use than the long sql : URI. Note that the Dat aSo
ur ce is looked up up in the registry, so we can use standard Spring XML to configure our Dat aSour ce.

fron("direct:sinple")
.to("sqgl:select * fromprojects where |license = # order by id?dataSource=#j dbc/ nmyDat aSource")
.to("mock:result");

And then we fire the message into the di r ect endpoint that will route it to our sql component that queries the database.

MockEndpoi nt nmock = get MockEndpoi nt ("nock:result");
nock. expect edMessageCount (1) ;

/1 send the query to direct that will route it to the sgl where we will execute the query
/1 and bind the paraneters with the data fromthe body. The body only contains one val ue
/1 in this case (XXX) but if we should use nmulti values then the body will be iterated

/1 so we could supply a List<String> instead containing each binding val ue.

tenpl ate. sendBody("di rect:sinple", "XXX");

nock. assert|sSatisfied();

/1l the result is a List
Li st<?> received = assertlslnstanceO (List.class, nock.getRecei vedExchanges().get(0).getln().getBody());

/1 and each rowin the list is a Map
Map<?, ?> row = assertlslnstanceOX (Map. cl ass, received. get(0));

/1 and we should be able the get the project fromthe map that shoul d be Linux
assert Equal s("Li nux", row. get("PRQIECT"));

We could configure the Dat aSour ce in Spring XML as follows:

<j ee:jndi-lookup id="nyDS" jndi-nanme="j dbc/ nyDat aSource"/>

Using named parameters
Available as of Camel 2.11

In the given route below, we want to get all the projects from the projects table. Notice the SQL query has 2 named parameters, :#lic and :#min.

Camel will then lookup for these parameters from the message body or message headers. Notice in the example above we set two headers with constant
value

for the named parameters:

fronm("direct:projects")
. setHeader ("lic", constant("ASF"))
.setHeader ("m n", constant(123))
.to("sqgl:select * fromprojects where license = :#lic and id > :#mn order by id")

Though if the message body is a j ava. uti | . Map then the named parameters will be taken from the body.

fron("direct:projects")
.to("sqgl:select * fromprojects where license = :#lic and id > :#mn order by id")

Using expression parameters

Available as of Camel 2.14

In the given route below, we want to get all the project from the database. It uses the body of the exchange for defining the license and uses the value of a
property as the second parameter.

fron("direct: projects")
. set Body(const ant (" ASF"))
.setProperty("mn", constant(123))
.to("sqgl:select * fromprojects where license = :#${body} and id > :#${property.nin} order by id")

Using IN queries with dynamic values

Available as of Camel 2.17

From Camel 2.17 onwards the SQL producer allows to use SQL queries with IN statements where the IN values is dynamic computed. For example from
the message body or a header etc.

To use IN you need to:

® prefix the parameter name with i n:
® add () around the parameter

An example explains this better. The following query is used:

select * fromprojects where project in (:#in:nanmes) order by id

In the following route:

from("direct: query")
.to("sql:classpath:sqgl/selectProjectslin.sqgl")
.to("l og: query")
.to("nock: query");

Then the IN query can use a header with the key names with the dynamic values such as:

/] use an array
tenpl at e. request BodyAndHeader ("di rect: query", "H there!", "nanes", new String[]{"Canel", "AMJ'});

/] use a list

Li st<String> names = new ArraylList<String>();

nanes. add(" Canel ") ;

nanes. add("AMY') ;

tenpl at e. request BodyAndHeader ("di rect: query", "H there!", "nanes", nanes);

/1 use a string separated values with conma
tenpl at e. request BodyAndHeader ("di rect: query", "H there!", "nanes", "Canel, AMJ');

The query can also be specified in the endpoint instead of being externalized (notice that externalizing makes maintaining the SQL queries easier)

from("direct: query")
.to("sql:select * fromprojects where project in (:#i n:nanmes) order by id")

.to("l og: query")
.to("nmock: query");

Using the JDBC based idempotent repository

Available as of Camel 2.7: In this section we will use the JDBC based idempotent repository.

Abstract class From Camel 2.9 onwards there is an abstract class or g. apache. canel . processor. i denpotent . j dbc.
Abst ract JdbcMessagel dReposi t ory you can extend to build custom JDBC idempotent repository.

First we have to create the database table which will be used by the idempotent repository. For Camel 2.7, we use the following schema:

sql CREATE TABLE CAMEL_MESSAGEPROCESSED (
processor Nanme VARCHAR(255),
nmessagel d VARCHAR(100))

In Camel 2.8, we added the createdAt column:

CREATE TABLE CAMEL_MESSAGEPROCESSED (
processor Nane VARCHAR(255),
messagel d VARCHAR(100),
createdAt TI MESTAWP)

The SQL Server TIMESTAMP type is a fixed-length binary-string type. It does not map to any of the JDBC time types: DATE, TIME, or TIMESTAMP.

We recommend to have a unique constraint on the columns processorName and messageld. Because the syntax for this constraint differs for database to
database, we do not show it here.

Second we need to setup a j avax. sql . Dat aSour ce in the spring XML file:

<j dbc: enbedded- dat abase i d="dat aSource" type="DERBY" />

And finally we can create our JDBC idempotent repository in the spring XML file as well:

<bean i d="nessagel dRepository" class="org. apache. canel . processor. i denpotent.jdbc. JdbcMessagel dReposi tory">

<constructor-arg ref="dataSource" />
<constructor-arg val ue="nyProcessor Nane" />
</ bean>

Customize the JdbcMessageldRepository

Starting with Camel 2.9.1 you have a few options to tune the or g. apache. canel . processor. i denpot ent . j dbc. JdbcMessagel dReposi t ory for
your needs:

Parameter Default Value Description

createTablelf | true Defines whether or not Camel should try to create the table if it doesn't exist.

NotExists
tableExistsSt = SELECT 1 FROM This query is used to figure out whether the table already exists or not. It must throw an
ring CAMEL_MESSAGEPROCESSED WHERE | exception to indicate the table doesn't exist.

1=0

createString

queryString

insertString

deleteString

CREATE TABLE
CAMEL_MESSAGEPROCESSED
(processorName VARCHAR(255),
messageld VARCHAR(100), createdAt
TIMESTAMP)

SELECT COUNT(*) FROM
CAMEL_MESSAGEPROCESSED WHERE
processorName = ? AND messageld = ?

INSERT INTO
CAMEL_MESSAGEPROCESSED
(processorName, messageld, createdAt)
VALUES (?, ?, ?)

DELETE FROM
CAMEL_MESSAGEPROCESSED WHERE
processorName = ? AND messageld = ?

The statement which is used to create the table.

The query which is used to figure out whether the message already exists in the
repository (the result is not equals to '0"). It takes two parameters. This first one is the
processor name (St ri ng) and the second one is the message id (St ri ng).

The statement which is used to add the entry into the table. It takes three parameter. The
first one is the processor name (St r i ng), the second one is the message id (St ri ng)
and the third one is the timestamp (j ava. sql . Ti mest anp) when this entry was added
to the repository.

The statement which is used to delete the entry from the database. It takes two
parameter. This first one is the processor name (St r i ng) and the second one is the
message id (St ri ng).

A customized or g. apache. canel . processor. i denpot ent.j dbc. JdbcMessagel dReposi t ory could look like:

<bean i d="nmessagel dReposi tory" cl ass="org. apache. canel . processor. i denpotent.jdbc. JdbcMessagel dReposi t ory" >
<constructor-arg ref="dataSource" />

<constructor-arg val ue="nyProcessor Nane" />

<property nane="t abl eExi stsString" val ue="SELECT 1 FROM CUSTOM ZED MESSAGE_REPCSI TORY WHERE 1 = 0" />
<property nanme="createString" val ue="CREATE TABLE CUSTOM ZED MESSAGE_REPCSI TORY (processor Name VARCHAR(255),

nessagel d VARCHAR(100),

creat edAt TI MESTAWP)"

/>

<property nanme="queryString" val ue="SELECT COUNT(*) FROM CUSTOM ZED MESSAGE_REPCSI TORY WHERE processor Nane =
? AND nessageld = ?" />
<property nanme="insertString" val ue="1NSERT | NTO CUSTOM ZED_MESSAGE_REPCSI TORY (processor Nane, nessagel d,

createdAt) VALUES (?, ?,
<property name="del eteString" val ue="DELETE FROM CUSTOM ZED MESSAGE_REPCSI TORY WHERE processor Nane

DEE

messageld = ?" />

</ bean>

Using the JDBC based aggregation repository

Available as of Camel 2.6

= ? AND

Using JdbcAggregationRepository in Camel 2.6 In Camel 2.6, the JdbcAggregationRepository is provided in the canel - j dbc- aggr egat or component.
From Camel 2.7 onwards, the JdbcAggr egat i onReposi t ory is provided in the canel - sql component.

JdbcAggr egati onReposi t ory is an Aggr egat i onReposi t or y which on the fly persists the aggregated messages. This ensures that you will not
loose messages, as the default aggregator will use an in memory only Aggr egat i onReposi tory.

The JdbcAggr egat i onReposi t or y allows together with Camel to provide persistent support for the Aggregator.

It has the following options:

Option
dataSource

repositoryNa
me

transactionMa
nager

lobHandler
returnOIdExc
hange
useRecovery

recoverylnter
val

Mandatory: The j avax. sql . Dat aSour ce to use for accessing the database.

Type Description
DataSource
String Mandatory: The name of the repository.

TransactionM
anager

LobHandler

Mandatory: The or g. spri ngf ranewor k. t ransacti on. Pl at f or mMTr ansact i onManager to mange transactions
for the database. The TransactionManager must be able to support databases.

Aorg. springfranework.jdbc. support.|ob. LobHandl er to handle Lob types in the database. Use this option

to use a vendor specific LobHandler, for example when using Oracle.

boolean

Whether the get operation should return the old existing Exchange if any existed. By default this option is f al se to

optimize as we do not need the old exchange when aggregating.

boolean

Whether or not recovery is enabled. This option is by default t r ue. When enabled the Camel Aggregator automatic

recover failed aggregated exchange and have them resubmitted.

long

If recovery is enabled then a background task is run every x'th time to scan for failed exchanges to recover and

resubmit. By default this interval is 5000 millis.

https://cwiki.apache.org/confluence/display/CAMEL/Aggregator2
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator2

maximumRed | int Allows you to limit the maximum number of redelivery attempts for a recovered exchange. If enabled then the
eliveries Exchange will be moved to the dead letter channel if all redelivery attempts failed. By default this option is disabled. If
this option is used then the deadLet t er Uri option must also be provided.

deadLetter | String An endpoint uri for a Dead Letter Channel where exhausted recovered Exchanges will be moved. If this option is used
Uri then the maxi munRedel i veri es option must also be provided.

storeBodyAsT = boolean Camel 2.11: Whether to store the message body as String which is human readable. By default this option is f al se st
ext oring the body in binary format.

headersToSt | List<String> Camel 2.11: Allows to store headers as String which is human readable. By default this option is disabled, storing the
oreAsText headers in binary format.

jdbcOptimistic | jdbcOptimistic = Camel 2.12: Allows to plugin a custom or g. apache. canel . processor . aggr egat e. j dbc.
LockingExcep | LockingExcep = JdbcOpti mi sti cLocki ngExcepti onMapper to map vendor specific error codes to an optimistick locking error, for
tionMapper tionMapper Camel to perform a retry. This requires opt i mi sti cLocki ng to be enabled.

Optimistic Locking

Optimistic locking is set to on by default. If two exchanges attempt to insert at the same time an exception will thrown, caught, converted to an
OptimisticLockingException, and rethrown.

What is preserved when persisting

JdbcAggr egat i onReposi t ory will only preserve any Seri al i zabl e compatible data types. If a data type is not such a type its dropped and a WARN is
logged. And it only persists the Message body and the Message headers. The Exchange properties are not persisted.

From Camel 2.11 onwards you can store the message body and select(ed) headers as String in separate columns.

Recovery

The JdbcAggr egat i onReposi t or y will by default recover any failed Exchange. It does this by having a background tasks that scans for failed Exchange
s in the persistent store. You can use the checkl nt er val option to set how often this task runs. The recovery works as transactional which ensures that
Camel will try to recover and redeliver the failed Exchange. Any Exchange which was found to be recovered will be restored from the persistent store and

resubmitted and send out again.

The following headers is set when an Exchange is being recovered/redelivered:

Header Type Description

Exchange.REDELIVERED Boolean ' Is set to true to indicate the Exchange is being redelivered.

Exchange.REDELIVERY_COUNTER ' Integer = The redelivery attempt, starting from 1.

Only when an Exchange has been successfully processed it will be marked as complete which happens when the conf i r mmethod is invoked on the Aggr
egat i onReposi t ory. This means if the same Exchange fails again it will be kept retried until it success.

You can use option maxi munRedel i veri es to limit the maximum number of redelivery attempts for a given recovered Exchange. You must also set the d
eadLett er Uri option so Camel knows where to send the Exchange when the maxi munRedel i veri es was hit.

You can see some examples in the unit tests of camel-sql, for example this test.
Database

To be operational, each aggregator uses two table: the aggregation and completed one. By convention the completed has the same name as the
aggregation one suffixed with " _COVPLETED" . The name must be configured in the Spring bean with the Reposi t or yNane property. In the following
example aggregation will be used.

The table structure definition of both table are identical: in both case a String value is used as key (id) whereas a Blob contains the exchange serialized in
byte array.

However one difference should be remembered: the id field does not have the same content depending on the table.

In the aggregation table id holds the correlation Id used by the component to aggregate the messages. In the completed table, id holds the id of the
exchange stored in corresponding the blob field.

Here is the SQL query used to create the tables, just replace " aggr egat i on" with your aggregator repository name.

https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://svn.apache.org/repos/asf/camel/trunk/components/camel-sql/src/test/java/org/apache/camel/processor/aggregate/jdbc/JdbcAggregateRecoverDeadLetterChannelTest.java

CREATE TABLE aggregation (

id varchar (255) NOT NULL,

exchange bl ob NOT NULL,

constraint aggregation_pk PRI MARY KEY (id)

)i

CREATE TABLE aggregati on_conpl eted (
id varchar(255) NOT NULL,
exchange bl ob NOT NULL,
constraint aggregation_conpl eted_pk PRI MARY KEY (id)

)

Storing body and headers as text
Available as of Camel 2.11

You can configure the JdbcAggr egat i onReposi t ory to store message body and select(ed) headers as String in separate columns. For example to
store the body, and the following two headers conpanyNane and account Nane use the following SQL:

CREATE TABLE aggr egati onRepo3 (
id varchar(255) NOT NULL,
exchange bl ob NOT NULL,
body varchar (1000),
conpanyName var char (1000),
account Name var char (1000),
constraint aggregati onRepo3_pk PRI MARY KEY (i d)

)

CREATE TABLE aggr egati onRepo3_conpl et ed (
id varchar(255) NOT NULL,
exchange bl ob NOT NULL,
body varchar (1000),
conpanyNane var char (1000),
account Name var char (1000),
constraint aggregati onRepo3_conpl et ed_pk PRI MARY KEY (i d)

)i

And then configure the repository to enable this behavior as shown below:

<bean i d="repo3" class="org.apache. canel . processor. aggr egat e. j dbc. JdbcAggr egat i onReposi tory" >
<property name="repositoryNane" val ue="aggregati onRepo3"/>
<property name="transactionManager" ref="txManager3"/>
<property nanme="dat aSource" ref="dataSource3"/>
<l-- configure to store the nessage body and foll ow ng headers as text in the repo -->
<property name="stor eBodyAsText" val ue="true"/>
<property name="header sToSt or eAsText ">
<list>
<val ue>conpanyNane</ val ue>
<val ue>account Nane</ val ue>

</list>
</ property>
</ bean>

Codec (Serialization)

Since they can contain any type of payload, Exchanges are not serializable by design. It is converted into a byte array to be stored in a database BLOB
field. All those conversions are handled by the JdbcCodec class. One detail of the code requires your attention: the G assLoadi ngAwar eQbj ect | nput
Stream

The d assLoadi ngAwar eObj ect | nput St r eamhas been reused from the Apache ActiveMQ project. It wraps an Obj ect | nput St r eamand use it with
the Cont ext G assLoader rather than the cur r ent Thr ead one. The benefit is to be able to load classes exposed by other bundles. This allows the
exchange body and headers to have custom types object references.

Transaction

A Spring Pl at f or nTr ansact i onManager is required to orchestrate transaction.

http://activemq.apache.org/

Service (Start/Stop)
The st art method verify the connection of the database and the presence of the required tables. If anything is wrong it will fail during starting.
Aggregator configuration

Depending on the targeted environment, the aggregator might need some configuration. As you already know, each aggregator should have its own
repository (with the corresponding pair of table created in the database) and a data source. If the default lobHandler is not adapted to your database
system, it can be injected with the | obHandl er property.

Here is the declaration for Oracle:

<bean id="I|obHandl er" cl ass="org. springfranmework.jdbc. support.|ob. Oracl eLobHandl er">
<property name="nativeJdbcExtractor" ref="nativeJdbcExtractor"/>
</ bean>
<bean id="nativeJdbcExtractor" class="org.springframework.jdbc.support.nativejdbc.
ComonsDbcpNat i veJdbcExtractor "/ >
<bean id="repo" class="org.apache. canel . processor. aggregate.jdbc. JdbcAggregati onRepository">
<property name="transacti onManager" ref="transacti onManager"/>
<property nanme="repositoryNane" val ue="aggregation"/>
<property name="dat aSource" ref="dataSource"/>

<l-- Only with Oacle, else use default -->
<property name="I| obHandl er" ref="1obHandler"/>
</ bean>

Optimistic locking

From Camel 2.12 onwards you can turn on opt i m sti cLocki ng and use this JIDBC based aggregation repository in a clustered environment where
multiple Camel applications shared the same database for the aggregation repository. If there is a race condition there JDBC driver will throw a vendor
specific exception which the JdbcAggr egat i onReposi t ory can react upon. To know which caused exceptions from the JDBC driver is regarded as an
optimistick locking error we need a mapper to do this. Therefore there is a or g. apache. canel . processor . aggr egat e. j dbc.

JdbcOpti mi sti cLocki ngExcepti onMapper allows you to implement your custom logic if needed. There is a default implementation or g. apache.
canel . processor. aggregat e. j dbc. Def aul t JdbcOpt i mi sti cLocki ngExcept i onMapper which works as follows:

The following check is done:

If the caused exception is an SQLExcept i on then the SQLState is checked if starts with 23.
If the caused exception is a Dat al nt egri tyVi ol ati onExcepti on

If the caused exception class name has "ConstraintViolation" in its name.

optional checking for FQN class name matches if any class names has been configured

You can in addition add FQN classnames, and if any of the caused exception (or any nested) equals any of the FQN class names, then its an optimistick
locking error.

Here is an example, where we define 2 extra FQN class names from the JDBC vendor.

<bean i d="repo" class="org.apache. canel . processor. aggregate. j dbc. JdbcAggr egati onReposi tory">
<property nanme="transacti onManager" ref="transacti onManager"/>
<property nane="repositoryNane" val ue="aggregation"/>
<property nane="dat aSource" ref="dataSource"/>
<property nane"j dbcOpti m sti cLocki ngExcepti onMapper" ref="nyExcepti onMapper"/>
</ bean>
<l-- use the default mapper with extra FON class nanes fromour JDBC driver -->
<bean i d="nmyExceptionMapper" class="org. apache. camel . processor. aggregate.j dbc.
Def aul t JdbcOpti nmi sti cLocki ngExcepti onMapper ">
<property nanme="cl assNanmes" >
<util:set>
<val ue>com f 0o. sql . MyVi ol ati onExcept oi on</ val ue>
<val ue>com f 0o. sql . MyQt her Vi ol ati onExcept oi on</ val ue>
</util:set>
</ property>
</ bean>

See Also

Endpoint
SQL Stored Procedure

JDBC

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint+See+Also
https://cwiki.apache.org/confluence/display/CAMEL/SQL+Stored+Procedure
https://cwiki.apache.org/confluence/display/CAMEL/JDBC

	SQL Component

