
SQL Component

SQL Component

The component allows you to work with databases using JDBC queries. The difference between this component and component is that in case sql: JDBC
of SQL the query is a property of the endpoint and it uses message payload as parameters passed to the query.

This component uses behind the scenes for the actual SQL handling.spring-jdbc

Maven users will need to add the following dependency to their for this component:pom.xml

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-sql</artifactId>
 <version>x.x.x</version>
 <!-- use the same version as your Camel core version -->
</dependency>

The SQL component also supports:

a JDBC based repository for the EIP pattern. See further below.Idempotent Consumer
a JDBC based repository for the EIP pattern. See further below.Aggregator

URI format

From Camel 2.11 onwards this component can create both consumer (e.g.) and producer endpoints (e.g.).from() to()

In previous versions, it could only act as a producer.

This component can be used as a .Transactional Client

The SQL component uses the following endpoint URI notation:

sql:select * from table where id=# order by name[?options]

From Camel 2.11 onwards you can use named parameters by using : style as shown:#name_of_the_parameter

 sql:select * from table where id=:#myId order by name[?options]

When using named parameters, Camel will lookup the names from, in the given precedence:
1. from message body if its a java.util.Map
2. from message headers

If a named parameter cannot be resolved, then an exception is thrown.

From onward you can use Simple expressions as parameters as shown:Camel 2.14

sql:select * from table where id=:#${property.myId} order by name[?options]

Notice that the standard symbol that denotes the parameters to an SQL query is substituted with the symbol, because the symbol is used to specify ? # ?
options for the endpoint. The symbol replacement can be configured on endpoint basis.?

From onwards you can externalize your SQL queries to files in the classpath or file system as shown:Camel 2.17

sql:classpath:sql/myquery.sql[?options]

And the myquery.sql file is in the classpath and is just a plain text

select * from table where id = :#${property.myId} order by name

In the file you can use multilines and format the SQL as you wish. And also use comments such as the – dash line.

https://cwiki.apache.org/confluence/display/CAMEL/JDBC
https://cwiki.apache.org/confluence/display/CAMEL/Idempotent+Consumer
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator2
http://camel.apache.org/transactional-client.html

You can append query options to the URI in the following format, ?option=value&option=value&...

Options

Option Type Default Description

batch boolean false Camel 2.7.5, 2.8.4 and 2.9: Execute SQL batch update statements. See notes below on how the treatment of the inbound message
body changes if this is set to .true

dataSou
rceRef

String null Deprecated and will be removed in Camel 3.0: Reference to a to look up in the registry. Use DataSource dataSource=#theName
instead.

dataSou
rce

String null Camel 2.11: Reference to a to look up in the registry.DataSource

placeho
lder

String # Camel 2.4: Specifies a character that will be replaced to in SQL query. Notice, that it is simple operation ? String.replaceAll()
and no SQL parsing is involved (quoted strings will also change). This replacement is happening if the endpoint is created using only
the . If you manually create the endpoint, then use the expected sign instead.SqlComponent ?

usePlac
eholder

boolean true Camel 2.17: Sets whether to use placeholder and replace all placeholder characters with ? sign in the SQL queries.

templat
e.<xxx>

 null Sets additional options on the Spring that is used behind the scenes to execute the queries. For instance, JdbcTemplate template
. For detailed documentation, see the documentation..maxRows=10 JdbcTemplate javadoc

allowNa
medPara
meters

boolean true Camel 2.11: Whether to allow using named parameters in the queries.

process
ingStra
tegy

 Camel 2.11: Allows to plugin to use a custom SQL consumer only: org.apache.camel.component.sql.
 to execute queries when the consumer has processed the rows/batch.SqlProcessingStrategy

prepare
Stateme
ntStrat
egy

 Camel 2.11: Allows to plugin to use a custom to org.apache.camel.component.sql.SqlPrepareStatementStrategy
control preparation of the query and prepared statement.

consume
r.delay

long 500 Camel 2.11: Delay in milliseconds between each poll.SQL consumer only:

consume
r.
initial
Delay

long 1000 Camel 2.11: Milliseconds before polling starts.SQL consumer only:

consume
r.
useFixe
dDelay

boolean false Camel 2.11: Set to to use fixed delay between polls, otherwise fixed rate is used. See SQL consumer only: true ScheduledExecuto
 in JDK for details.rService

maxMess
agesPer
Poll

int 0 Camel 2.11: An integer value to define the maximum number of messages to gather per poll. By default, no SQL consumer only:
maximum is set.

useIter
ator

boolean true Camel 2.11: If each row returned when polling will be processed individually. If the entire SQL consumer only: true false java.
 of data is set as the IN body. Notice in Camel 2.15.x or older you need to prefix this option with consumer., eg consumer.util.List

useIterator=true.

routeEm
ptyResu
ltSet

boolean false Camel 2.11: Whether to route a single empty if there was no data to poll. Notice in Camel 2.15.x or SQL consumer only: Exchange
older you need to prefix this option with consumer., eg consumer.useIterator=true.

onConsu
me

String null Camel 2.11: After processing each row then this query can be executed, if the was processed SQL consumer only: Exchange
successfully, for example to mark the row as processed. The query can have parameter. Notice in Camel 2.15.x or older you need to
prefix this option with consumer., eg consumer.useIterator=true.

onConsu
meFailed

String null Camel 2.11: After processing each row then this query can be executed, if the failed, for example to SQL consumer only: Exchange
mark the row as failed. The query can have parameter. Notice in Camel 2.15.x or older you need to prefix this option with consumer.,
eg consumer.useIterator=true.

onConsu
meBatch
Complete

String null Camel 2.11: After processing the entire batch, this query can be executed to bulk update rows etc. The query SQL consumer only:
cannot have parameters. Notice in Camel 2.15.x or older you need to prefix this option with consumer., eg consumer.useIterator=true.

expecte
dUpdate
Count

int -1 Camel 2.11: If using then this option can be used to set an expected number of rows SQL consumer only: consumer.onConsume
being updated. Typically you may set this to to expect one row to be updated. Notice in Camel 2.15.x or older you need to prefix 1
this option with consumer., eg consumer.useIterator=true.

breakBa
tchOnCo
nsumeFa
il

boolean false Camel 2.11: If using and it fails, then this option controls whether to break out of the SQL consumer only: consumer.onConsume
batch or continue processing the next row from the batch. Notice in Camel 2.15.x or older you need to prefix this option with
consumer., eg consumer.useIterator=true.

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange

alwaysP
opulate
Stateme
nt

boolean false Camel 2.11: If enabled then the method from SQL producer only: populateStatement org.apache.camel.component.sql.
 is always invoked, also if there is no expected parameters to be prepared. When this is SqlPrepareStatementStrategy false

then the is only invoked if there is 1 or more expected parameters to be set; for example this avoids reading populateStatement
the message body/headers for SQL queries with no parameters.

separat
or

char , Camel 2.11.1: The separator to use when parameter values is taken from message body (if the body is a String type), to be inserted
at # placeholders. Notice if you use named parameters, then a type is used instead.Map

outputT
ype

String SelectL
ist

Camel 2.12.0: outputType='SelectList', for consumer or producer, will output a List of Map. will output single Java object SelectOne
in the following way:
a) If the query has only single column, then that JDBC Column object is returned. (such as SELECT COUNT(*) FROM PROJECT
will return a Long object.
b) If the query has more than one column, then it will return a Map of that result.
c) If the is set, then it will convert the query result into an Java bean object by calling all the setters that match the outputClass
column names. It will assume your class has a default constructor to create instance with.
d) If the query resulted in more than one rows, it throws an non-unique result exception.

From onwards the SelectList also supports mapping each row to a Java object as the SelectOne does (only step c).Camel 2.14.1

From onwards there is a new StreamList outputType that streams the result of the query using an Iterator. It can be used Camel 2.18
with the EIP in streaming mode to process the ResultSet in streaming fashion. This StreamList do not support batch mode, Splitter
but you can use outputClass to map each row to a class.

outputC
lass

String null Camel 2.12.0: Specify the full package and class name to use as conversion when .outputType=SelectOne

outputH
eader

String null Camel 2.15: To store the result as a header instead of the message body. This allows to preserve the existing message body as-is.

paramet
ersCount

int 0 Camel 2.11.2/2.12.0 If set greater than zero, then Camel will use this count value of parameters to replace instead of querying via
JDBC metadata API. This is useful if the JDBC vendor could not return correct parameters count, then user may override instead.

noop boolean false Camel 2.12.0 If set, will ignore the results of the SQL query and use the existing IN message as the OUT message for the
continuation of processing

useMess
ageBody
ForSql

boolean false Camel 2.16: Whether to use the message body as the SQL and then headers for parameters. If this option is enabled then the SQL
in the uri is not used. The SQL parameters must then be provided in a header with the key . This option is CamelSqlParameters
only for the producer.

transac
ted

boolean false Camel 2.16.2: Enables or disables transaction. If enabled then if processing an exchange failed then the SQL consumer only:
consumer break out processing any further exchanges to cause a rollback eager

Treatment of the message body

The SQL component tries to convert the message body to an object of type and then uses this iterator to fill the query parameters java.util.Iterator
(where each query parameter is represented by a symbol (or configured placeholder) in the endpoint URI). If the message body is not an array or #
collection, the conversion results in an iterator that iterates over only one object, which is the body itself.

For example, if the message body is an instance of , the first item in the list is substituted into the first occurrence of in the SQL query, java.util.List #
the second item in the list is substituted into the second occurrence of , and so on.#

If is set to , then the interpretation of the inbound message body changes slightly – instead of an iterator of parameters, the component batch true
expects an iterator that contains the parameter iterators; the size of the outer iterator determines the batch size.

From Camel 2.16 onwards you can use the option useMessageBodyForSql that allows to use the message body as the SQL statement, and then the SQL
parameters must be provided in a header with the key SqlConstants.SQL_PARAMETERS. This allows the SQL component to work more dynamic as the
SQL query is from the message body.

Result of the query

For operations, the result is an instance of type, as returned by the method. For select List<Map<String, Object>> JdbcTemplate.queryForList() up
 operations, the result is the number of updated rows, returned as an .date Integer

By default, the result is placed in the message body. If the outputHeader parameter is set, the result is placed in the header. This is an alternative to using
a full message enrichment pattern to add headers, it provides a concise syntax for querying a sequence or some other small value into a header. It is
convenient to use outputHeader and outputType together:

from("jms:order.inbox")
 .to("sql:select order_seq.nextval from dual?outputHeader=OrderId&outputType=SelectOne")
 .to("jms:order.booking");

Using StreamList

From onwards the producer supports outputType=StreamList that uses an iterator to stream the output of the query. This allows to process the Camel 2.18
data in a streaming fashion which for example can be used by the EIP to process each row one at a time, and load data from the database as Splitter
needed.

https://cwiki.apache.org/confluence/display/CAMEL/Splitter
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html#queryForList(java.lang.String,%20java.lang.Object%91%93)
https://cwiki.apache.org/confluence/display/CAMEL/Splitter

from("direct:withSplitModel")
 .to("sql:select * from projects order by id?outputType=StreamList&outputClass=org.apache.camel.component.sql.
ProjectModel")
 .to("log:stream")
 .split(body()).streaming()
 .to("log:row")
 .to("mock:result")
 .end();

Header values

When performing operations, the SQL Component stores the update count in the following message headers:update

Header Description

CamelSqlUpda
teCount

The number of rows updated for operations, returned as an object. This header is not provided when using update Integer
outputType=StreamList.

CamelSqlRowC
ount

The number of rows returned for operations, returned as an object. This header is not provided when using select Integer
outputType=StreamList.

CamelSqlQuery Camel 2.8: Query to execute. This query takes precedence over the query specified in the endpoint URI. Note that query
parameters in the header represented by a instead of a symbolare ? #

When performing operations, the SQL Component stores the rows with the generated keys and number of these rown in the following message insert
headers ():Available as of Camel 2.12.4, 2.13.1

Header Description

CamelSqlGeneratedKeysRowCount The number of rows in the header that contains generated keys.

CamelSqlGeneratedKeyRows Rows that contains the generated keys (a list of maps of keys).

Generated keys

Available as of Camel 2.12.4, 2.13.1 and 2.14

If you insert data using SQL INSERT, then the RDBMS may support auto generated keys. You can instruct the SQL producer to return the generated keys
in headers.
To do that set the header . Then the generated keys will be provided as headers with the keys listed in the CamelSqlRetrieveGeneratedKeys=true
table above.

You can see more details in this .unit test

Configuration

You can now set a reference to a in the URI directly:DataSource

 select * from table where id=# order by name?dataSource=myDS

Sample

In the sample below we execute a query and retrieve the result as a of rows, where each row is a and the key is the List Map<String, Object>
column name.

First, we set up a table to use for our sample. As this is based on an unit test, we do it in java:

db = new EmbeddedDatabaseBuilder()
 .setType(EmbeddedDatabaseType.DERBY).addScript("sql/createAndPopulateDatabase.sql").build();

The SQL script we execute looks like as described below:createAndPopulateDatabase.sql

https://git-wip-us.apache.org/repos/asf?p=camel.git;a=blob_plain;f=components/camel-sql/src/test/java/org/apache/camel/component/sql/SqlGeneratedKeysTest.java;hb=3962b23f94bb4bc23011b931add08c3f6833c82e

create table projects (id integer primary key, project varchar(10), license varchar(5));
insert into projects values (1, 'Camel', 'ASF');
insert into projects values (2, 'AMQ', 'ASF');
insert into projects values (3, 'Linux', 'XXX');

Then we configure our route and our component. Notice that we use a endpoint in front of the endpoint. This allows us to send an sql direct sql
exchange to the endpoint with the URI, , which is much easier for the client to use than the long URI. Note that the direct direct:simple sql: DataSo

 is looked up up in the registry, so we can use standard Spring XML to configure our .urce DataSource

from("direct:simple")
 .to("sql:select * from projects where license = # order by id?dataSource=#jdbc/myDataSource")
 .to("mock:result");

And then we fire the message into the endpoint that will route it to our component that queries the database.direct sql

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);

// send the query to direct that will route it to the sql where we will execute the query
// and bind the parameters with the data from the body. The body only contains one value
// in this case (XXX) but if we should use multi values then the body will be iterated
// so we could supply a List<String> instead containing each binding value.
template.sendBody("direct:simple", "XXX");

mock.assertIsSatisfied();

// the result is a List
List<?> received = assertIsInstanceOf(List.class, mock.getReceivedExchanges().get(0).getIn().getBody());

// and each row in the list is a Map
Map<?, ?> row = assertIsInstanceOf(Map.class, received.get(0));

// and we should be able the get the project from the map that should be Linux
assertEquals("Linux", row.get("PROJECT"));

We could configure the in Spring XML as follows:DataSource

<jee:jndi-lookup id="myDS" jndi-name="jdbc/myDataSource"/>

Using named parameters

Available as of Camel 2.11

In the given route below, we want to get all the projects from the projects table. Notice the SQL query has 2 named parameters, :#lic and :#min.
Camel will then lookup for these parameters from the message body or message headers. Notice in the example above we set two headers with constant
value
for the named parameters:

from("direct:projects")
 .setHeader("lic", constant("ASF"))
 .setHeader("min", constant(123))
 .to("sql:select * from projects where license = :#lic and id > :#min order by id")

Though if the message body is a then the named parameters will be taken from the body.java.util.Map

from("direct:projects")
 .to("sql:select * from projects where license = :#lic and id > :#min order by id")

Using expression parameters

Available as of Camel 2.14

In the given route below, we want to get all the project from the database. It uses the body of the exchange for defining the license and uses the value of a
property as the second parameter.

from("direct:projects")
 .setBody(constant("ASF"))
 .setProperty("min", constant(123))
 .to("sql:select * from projects where license = :#${body} and id > :#${property.min} order by id")

Using IN queries with dynamic values

Available as of Camel 2.17

From Camel 2.17 onwards the SQL producer allows to use SQL queries with IN statements where the IN values is dynamic computed. For example from
the message body or a header etc.

To use IN you need to:

prefix the parameter name with in:
add around the parameter()

An example explains this better. The following query is used:

select * from projects where project in (:#in:names) order by id

In the following route:

from("direct:query")
 .to("sql:classpath:sql/selectProjectsIn.sql")
 .to("log:query")
 .to("mock:query");

Then the IN query can use a header with the key names with the dynamic values such as:

// use an array
template.requestBodyAndHeader("direct:query", "Hi there!", "names", new String[]{"Camel", "AMQ"});

// use a list
List<String> names = new ArrayList<String>();
names.add("Camel");
names.add("AMQ");
template.requestBodyAndHeader("direct:query", "Hi there!", "names", names);

// use a string separated values with comma
template.requestBodyAndHeader("direct:query", "Hi there!", "names", "Camel,AMQ");

The query can also be specified in the endpoint instead of being externalized (notice that externalizing makes maintaining the SQL queries easier)

from("direct:query")
 .to("sql:select * from projects where project in (:#in:names) order by id")
 .to("log:query")
 .to("mock:query");

Using the JDBC based idempotent repository

Available as of Camel 2.7: In this section we will use the JDBC based idempotent repository.

Abstract class From Camel 2.9 onwards there is an abstract class org.apache.camel.processor.idempotent.jdbc.
 you can extend to build custom JDBC idempotent repository.AbstractJdbcMessageIdRepository

First we have to create the database table which will be used by the idempotent repository. For , we use the following schema:Camel 2.7

 sqlCREATE TABLE CAMEL_MESSAGEPROCESSED (
 processorName VARCHAR(255),
 messageId VARCHAR(100))

In , we added the createdAt column:Camel 2.8

 CREATE TABLE CAMEL_MESSAGEPROCESSED (
 processorName VARCHAR(255),
 messageId VARCHAR(100),
 createdAt TIMESTAMP)

 The SQL Server type is a fixed-length binary-string type. It does not map to any of the JDBC time types: , , or .TIMESTAMP DATE TIME TIMESTAMP

We recommend to have a unique constraint on the columns processorName and messageId. Because the syntax for this constraint differs for database to
database, we do not show it here.

Second we need to setup a in the spring XML file:javax.sql.DataSource

<jdbc:embedded-database id="dataSource" type="DERBY" />

And finally we can create our JDBC idempotent repository in the spring XML file as well:

 <bean id="messageIdRepository" class="org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository">
 <constructor-arg ref="dataSource" />
 <constructor-arg value="myProcessorName" />
 </bean>

Customize the JdbcMessageIdRepository

Starting with you have a few options to tune the for Camel 2.9.1 org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository
your needs:

Parameter Default Value Description

createTableIf
NotExists

true Defines whether or not Camel should try to create the table if it doesn't exist.

tableExistsSt
ring

SELECT 1 FROM
CAMEL_MESSAGEPROCESSED WHERE
1 = 0

This query is used to figure out whether the table already exists or not. It must throw an
exception to indicate the table doesn't exist.

createString CREATE TABLE
CAMEL_MESSAGEPROCESSED
(processorName VARCHAR(255),
messageId VARCHAR(100), createdAt
TIMESTAMP)

The statement which is used to create the table.

queryString SELECT COUNT(*) FROM
CAMEL_MESSAGEPROCESSED WHERE
processorName = ? AND messageId = ?

The query which is used to figure out whether the message already exists in the
repository (the result is not equals to '0'). It takes two parameters. This first one is the
processor name () and the second one is the message id ().String String

insertString INSERT INTO
CAMEL_MESSAGEPROCESSED
(processorName, messageId, createdAt)
VALUES (?, ?, ?)

The statement which is used to add the entry into the table. It takes three parameter. The
first one is the processor name (), the second one is the message id () String String
and the third one is the timestamp () when this entry was added java.sql.Timestamp
to the repository.

deleteString DELETE FROM
CAMEL_MESSAGEPROCESSED WHERE
processorName = ? AND messageId = ?

The statement which is used to delete the entry from the database. It takes two
parameter. This first one is the processor name () and the second one is the String
message id ().String

A customized could look like:org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository

<bean id="messageIdRepository" class="org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository">
 <constructor-arg ref="dataSource" />
 <constructor-arg value="myProcessorName" />
 <property name="tableExistsString" value="SELECT 1 FROM CUSTOMIZED_MESSAGE_REPOSITORY WHERE 1 = 0" />
 <property name="createString" value="CREATE TABLE CUSTOMIZED_MESSAGE_REPOSITORY (processorName VARCHAR(255),
messageId VARCHAR(100), createdAt TIMESTAMP)" />
 <property name="queryString" value="SELECT COUNT(*) FROM CUSTOMIZED_MESSAGE_REPOSITORY WHERE processorName =
? AND messageId = ?" />
 <property name="insertString" value="INSERT INTO CUSTOMIZED_MESSAGE_REPOSITORY (processorName, messageId,
createdAt) VALUES (?, ?, ?)" />
 <property name="deleteString" value="DELETE FROM CUSTOMIZED_MESSAGE_REPOSITORY WHERE processorName = ? AND
messageId = ?" />
</bean>

Using the JDBC based aggregation repository

Available as of Camel 2.6

Using JdbcAggregationRepository in Camel 2.6 In Camel 2.6, the JdbcAggregationRepository is provided in the component. camel-jdbc-aggregator
From Camel 2.7 onwards, the is provided in the component.JdbcAggregationRepository camel-sql

JdbcAggregationRepository is an which on the fly persists the aggregated messages. This ensures that you will not AggregationRepository
loose messages, as the default aggregator will use an in memory only .AggregationRepository

The allows together with Camel to provide persistent support for the .JdbcAggregationRepository Aggregator

It has the following options:

Option Type Description

dataSource DataSource Mandatory: The to use for accessing the database.javax.sql.DataSource

repositoryNa
me

String Mandatory: The name of the repository.

transactionMa
nager

TransactionM
anager

Mandatory: The to mange transactions org.springframework.transaction.PlatformTransactionManager
for the database. The TransactionManager must be able to support databases.

lobHandler LobHandler A to handle Lob types in the database. Use this option org.springframework.jdbc.support.lob.LobHandler
to use a vendor specific LobHandler, for example when using Oracle.

returnOldExc
hange

boolean Whether the get operation should return the old existing Exchange if any existed. By default this option is to false
optimize as we do not need the old exchange when aggregating.

useRecovery boolean Whether or not recovery is enabled. This option is by default . When enabled the Camel automatic true Aggregator
recover failed aggregated exchange and have them resubmitted.

recoveryInter
val

long If recovery is enabled then a background task is run every x'th time to scan for failed exchanges to recover and
resubmit. By default this interval is 5000 millis.

https://cwiki.apache.org/confluence/display/CAMEL/Aggregator2
https://cwiki.apache.org/confluence/display/CAMEL/Aggregator2

maximumRed
eliveries

int Allows you to limit the maximum number of redelivery attempts for a recovered exchange. If enabled then the
Exchange will be moved to the dead letter channel if all redelivery attempts failed. By default this option is disabled. If
this option is used then the option must also be provided.deadLetterUri

deadLetter
Uri

String An endpoint uri for a where exhausted recovered Exchanges will be moved. If this option is used Dead Letter Channel
then the option must also be provided.maximumRedeliveries

storeBodyAsT
ext

boolean Camel 2.11: Whether to store the message body as String which is human readable. By default this option is stfalse
oring the body in binary format.

headersToSt
oreAsText

List<String> Allows to store headers as String which is human readable. By default this option is disabled, storing the Camel 2.11:
headers in binary format.

jdbcOptimistic
LockingExcep
tionMapper

jdbcOptimistic
LockingExcep
tionMapper

Camel 2.12: Allows to plugin a custom org.apache.camel.processor.aggregate.jdbc.
 to map vendor specific error codes to an optimistick locking error, for JdbcOptimisticLockingExceptionMapper

Camel to perform a retry. This requires to be enabled.optimisticLocking

Optimistic Locking

Optimistic locking is set to on by default. If two exchanges attempt to insert at the same time an exception will thrown, caught, converted to an
OptimisticLockingException, and rethrown.

What is preserved when persisting

JdbcAggregationRepository will only preserve any compatible data types. If a data type is not such a type its dropped and a is Serializable WARN
logged. And it only persists the body and the headers. The properties are persisted.Message Message Exchange not

From Camel 2.11 onwards you can store the message body and select(ed) headers as String in separate columns.

Recovery

The will by default recover any failed . It does this by having a background tasks that scans for failed JdbcAggregationRepository Exchange Exchange
s in the persistent store. You can use the option to set how often this task runs. The recovery works as transactional which ensures that checkInterval
Camel will try to recover and redeliver the failed . Any which was found to be recovered will be restored from the persistent store and Exchange Exchange
resubmitted and send out again.

The following headers is set when an is being recovered/redelivered:Exchange

Header Type Description

Exchange.REDELIVERED Boolean Is set to true to indicate the is being redelivered.Exchange

Exchange.REDELIVERY_COUNTER Integer The redelivery attempt, starting from 1.

Only when an has been successfully processed it will be marked as complete which happens when the method is invoked on the Exchange confirm Aggr
. This means if the same fails again it will be kept retried until it success.egationRepository Exchange

You can use option to limit the maximum number of redelivery attempts for a given recovered . You must also set the maximumRedeliveries Exchange d
 option so Camel knows where to send the when the was hit.eadLetterUri Exchange maximumRedeliveries

You can see some examples in the unit tests of camel-sql, for example .this test

Database

To be operational, each aggregator uses two table: the aggregation and completed one. By convention the completed has the same name as the
aggregation one suffixed with . The name must be configured in the Spring bean with the property. In the following "_COMPLETED" RepositoryName
example aggregation will be used.

The table structure definition of both table are identical: in both case a String value is used as key () whereas a Blob contains the exchange serialized in id
byte array.
However one difference should be remembered: the field does not have the same content depending on the table.id
In the aggregation table holds the correlation Id used by the component to aggregate the messages. In the completed table, holds the id of the id id
exchange stored in corresponding the blob field.

Here is the SQL query used to create the tables, just replace with your aggregator repository name."aggregation"

https://cwiki.apache.org/confluence/display/CAMEL/Dead+Letter+Channel
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://svn.apache.org/repos/asf/camel/trunk/components/camel-sql/src/test/java/org/apache/camel/processor/aggregate/jdbc/JdbcAggregateRecoverDeadLetterChannelTest.java

CREATE TABLE aggregation (
 id varchar(255) NOT NULL,
 exchange blob NOT NULL,
 constraint aggregation_pk PRIMARY KEY (id)
);

CREATE TABLE aggregation_completed (
 id varchar(255) NOT NULL,
 exchange blob NOT NULL,
 constraint aggregation_completed_pk PRIMARY KEY (id)
);

Storing body and headers as text

Available as of Camel 2.11

You can configure the to store message body and select(ed) headers as String in separate columns. For example to JdbcAggregationRepository
store the body, and the following two headers and use the following SQL:companyName accountName

CREATE TABLE aggregationRepo3 (
 id varchar(255) NOT NULL,
 exchange blob NOT NULL,
 body varchar(1000),
 companyName varchar(1000),
 accountName varchar(1000),
 constraint aggregationRepo3_pk PRIMARY KEY (id)
);

CREATE TABLE aggregationRepo3_completed (
 id varchar(255) NOT NULL,
 exchange blob NOT NULL,
 body varchar(1000),
 companyName varchar(1000),
 accountName varchar(1000),
 constraint aggregationRepo3_completed_pk PRIMARY KEY (id)
);

And then configure the repository to enable this behavior as shown below:

<bean id="repo3" class="org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">
 <property name="repositoryName" value="aggregationRepo3"/>
 <property name="transactionManager" ref="txManager3"/>
 <property name="dataSource" ref="dataSource3"/>
 <!-- configure to store the message body and following headers as text in the repo -->
 <property name="storeBodyAsText" value="true"/>
 <property name="headersToStoreAsText">
 <list>
 <value>companyName</value>
 <value>accountName</value>
 </list>
 </property>
 </bean>

Codec (Serialization)

Since they can contain any type of payload, Exchanges are not serializable by design. It is converted into a byte array to be stored in a database BLOB
field. All those conversions are handled by the class. One detail of the code requires your attention: the JdbcCodec ClassLoadingAwareObjectInput

.Stream

The has been reused from the project. It wraps an and use it with ClassLoadingAwareObjectInputStream Apache ActiveMQ ObjectInputStream
the rather than the one. The benefit is to be able to load classes exposed by other bundles. This allows the ContextClassLoader currentThread
exchange body and headers to have custom types object references.

Transaction

A Spring is required to orchestrate transaction.PlatformTransactionManager

http://activemq.apache.org/

Service (Start/Stop)

The method verify the connection of the database and the presence of the required tables. If anything is wrong it will fail during starting.start

Aggregator configuration

Depending on the targeted environment, the aggregator might need some configuration. As you already know, each aggregator should have its own
repository (with the corresponding pair of table created in the database) and a data source. If the default lobHandler is not adapted to your database
system, it can be injected with the property.lobHandler

Here is the declaration for Oracle:

<bean id="lobHandler" class="org.springframework.jdbc.support.lob.OracleLobHandler">
 <property name="nativeJdbcExtractor" ref="nativeJdbcExtractor"/>
</bean>
<bean id="nativeJdbcExtractor" class="org.springframework.jdbc.support.nativejdbc.
CommonsDbcpNativeJdbcExtractor"/>
<bean id="repo" class="org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="repositoryName" value="aggregation"/>
 <property name="dataSource" ref="dataSource"/>
 <!-- Only with Oracle, else use default -->
 <property name="lobHandler" ref="lobHandler"/>
</bean>

Optimistic locking

From onwards you can turn on and use this JDBC based aggregation repository in a clustered environment where Camel 2.12 optimisticLocking
multiple Camel applications shared the same database for the aggregation repository. If there is a race condition there JDBC driver will throw a vendor
specific exception which the can react upon. To know which caused exceptions from the JDBC driver is regarded as an JdbcAggregationRepository
optimistick locking error we need a mapper to do this. Therefore there is a org.apache.camel.processor.aggregate.jdbc.

 allows you to implement your custom logic if needed. There is a default implementation JdbcOptimisticLockingExceptionMapper org.apache.
 which works as follows:camel.processor.aggregate.jdbc.DefaultJdbcOptimisticLockingExceptionMapper

The following check is done:

If the caused exception is an then the SQLState is checked if starts with 23.SQLException

If the caused exception is a DataIntegrityViolationException

If the caused exception class name has "ConstraintViolation" in its name.

optional checking for FQN class name matches if any class names has been configured

You can in addition add FQN classnames, and if any of the caused exception (or any nested) equals any of the FQN class names, then its an optimistick
locking error.

Here is an example, where we define 2 extra FQN class names from the JDBC vendor.

<bean id="repo" class="org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="repositoryName" value="aggregation"/>
 <property name="dataSource" ref="dataSource"/>
 <property name"jdbcOptimisticLockingExceptionMapper" ref="myExceptionMapper"/>
</bean>
<!-- use the default mapper with extra FQN class names from our JDBC driver -->
<bean id="myExceptionMapper" class="org.apache.camel.processor.aggregate.jdbc.
DefaultJdbcOptimisticLockingExceptionMapper">
 <property name="classNames">
 <util:set>
 <value>com.foo.sql.MyViolationExceptoion</value>
 <value>com.foo.sql.MyOtherViolationExceptoion</value>
 </util:set>
 </property>
</bean>

See Also

Endpoint

SQL Stored Procedure

JDBC

https://cwiki.apache.org/confluence/display/CAMEL/Endpoint+See+Also
https://cwiki.apache.org/confluence/display/CAMEL/SQL+Stored+Procedure
https://cwiki.apache.org/confluence/display/CAMEL/JDBC

	SQL Component

