
Bean Binding

Bean Binding

Bean Binding in Camel defines both which methods are invoked and also how the is converted into the parameters of the method when it is Message
invoked.

Choosing the method to invoke

The binding of a Camel to a bean method call can occur in different ways, in the following order of importance:Message

if the message contains the header then that method is invoked, converting the body to the type of the method's CamelBeanMethodName
argument.

From onwards you can qualify parameter types to select exactly which method to use among overloads with the same name Camel 2.8
(see below for more details).
From onwards you can specify parameter values directly in the method option (see below for more details).Camel 2.9

you can explicitly specify the method name in the or when using or DSL POJO Consuming POJO Producing
if the bean has a method marked with the annotation, then that method is selected@Handler
if the bean can be converted to a using the mechanism, then this is used to process the message. The Processor Type Converter ActiveMQ
component uses this mechanism to allow any JMS MessageListener to be invoked directly by Camel without having to write any integration glue
code. You can use the same mechanism to integrate Camel into any other messaging/remoting frameworks.
if the body of the message can be converted to a (the default payload used by the) component - then that is used to BeanInvocation ProxyHelper
invoke the method and pass its arguments
otherwise the type of the body is used to find a matching method; an error is thrown if a single method cannot be chosen unambiguously.
you can also use Exchange as the parameter itself, but then the return type must be void.
if the bean class is private (or package-private), interface methods will be preferred (from onwards) since Camel can't invoke class Camel 2.9
methods on such beans

In cases where Camel cannot choose a method to invoke, an is thrown.AmbiguousMethodCallException

By default the return value is set on the outbound message body.

Asynchronous processing

From onwards you can return a CompletionStage implementation (e.g. a CompletableFuture) to implement asynchronous processing.Camel 2.18

Please be sure to properly complete the CompletionStage with the result or exception, including any timeout handling. Exchange processing would wait for
completion and would not impose any timeouts automatically. It's extremely useful to monitor for any hanging messages.Inflight repository

Note that completing with "null" won't set outbody message body to null, but would keep message intact. This is useful to support methods that don't
modify exchange and return CompletableFuture<Void>. To set body to null, just add Exchange method parameter and directly modify exchange messages.

Examples:

Simple asynchronous processor, modifying message body.

public CompletableFuture<String> doSomethingAsync(String body)

Composite processor that do not modify exchange

 public CompletableFuture<Void> doSomethingAsync(String body) {
 return CompletableFuture.allOf(doA(body), doB(body), doC());
 }

Parameter binding

When a method has been chosen for invocation, Camel will bind to the parameters of the method.

The following Camel-specific types are automatically bound:

org.apache.camel.Exchange
org.apache.camel.Message
org.apache.camel.CamelContext
org.apache.camel.TypeConverter
org.apache.camel.spi.Registry
java.lang.Exception

https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Consuming
https://cwiki.apache.org/confluence/display/CAMEL/POJO+Producing
https://cwiki.apache.org/confluence/display/CAMEL/Processor
https://cwiki.apache.org/confluence/display/CAMEL/Type+Converter
https://cwiki.apache.org/confluence/display/CAMEL/ActiveMQ
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
https://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/InflightRepository.html

So, if you declare any of these types, they will be provided by Camel. - so it's Note that will bind to the caught exception of the Exception Exchange
often usable if you employ a to handle, e.g., an route.Pojo onException

What is most interesting is that Camel will also try to bind the body of the to the first parameter of the method signature (albeit not of any of the Exchange
types above). So if, for instance, we declare a parameter as , then Camel will bind the IN body to this type. Camel will also automatically String body
convert to the type declared in the method signature.

Let's review some examples:

Below is a simple method with a body binding. Camel will bind the IN body to the parameter and convert it to a .body String

public String doSomething(String body)

In the following sample we got one of the automatically-bound types as well - for instance, a that we can use to lookup beans.Registry

public String doSomething(String body, Registry registry)

We can use as well:Exchange

public String doSomething(String body, Exchange exchange)

You can also have multiple types:

public String doSomething(String body, Exchange exchange, TypeConverter converter)

And imagine you use a to handle a given custom exception - we can then bind that as well:Pojo InvalidOrderException

public String badOrder(String body, InvalidOrderException invalid)

Notice that we can bind to it even if we use a sub type of as Camel still knows it's an exception and can bind the cause (if any java.lang.Exception
exists).

So what about headers and other stuff? Well now it gets a bit tricky - so we can use annotations to help us, or specify the binding in the method name
option.
See the following sections for more detail.

Binding Annotations

You can use the to customize how parameter values are created from the Parameter Binding Annotations Message

Examples

For example, a such as:Bean

public class Bar {
 public String doSomething(String body) {
 // process the in body and return whatever you want
 return "Bye World";
}

Or the Exchange example. Notice that the return type must be when there is only a single parameter of the type :void org.apache.camel.Exchange

 public class Bar {
 public void doSomething(Exchange exchange) {
 // process the exchange
 exchange.getIn().setBody("Bye World");
 }

https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Exchange
https://cwiki.apache.org/confluence/display/CAMEL/Pojo
https://cwiki.apache.org/confluence/display/CAMEL/Parameter+Binding+Annotations
https://cwiki.apache.org/confluence/display/CAMEL/Message
https://cwiki.apache.org/confluence/display/CAMEL/Bean

@Handler

You can mark a method in your bean with the @Handler annotation to indicate that this method should be used for .Bean Binding
This has an advantage as you need not specify a method name in the Camel route, and therefore do not run into problems after renaming the method in
an IDE that can't find all its references.

public class Bar {
 @Handler
 public String doSomething(String body) {
 // process the in body and return whatever you want
 return "Bye World";
 }
}

Parameter binding using method option

Available as of Camel 2.9

Camel uses the following rules to determine if it's a parameter value in the method option

The value is either or which denotes a boolean valuetrue false
The value is a numeric value such as or 123 7
The value is a String enclosed with either single or double quotes
The value is null which denotes a valuenull
It can be evaluated using the language, which means you can use, e.g., body, header.foo and other tokens. Notice the tokens Simple Simple
must be enclosed with ${ }.

Any other value is consider to be a type declaration instead - see the next section about specifying types for overloaded methods.

When invoking a you can instruct Camel to invoke a specific method by providing the method name:Bean

.bean(OrderService.class, "doSomething")

Here we tell Camel to invoke the doSomething method - Camel handles the parameters' binding. Now suppose the method has 2 parameters, and the 2nd
parameter is a boolean where we want to pass in a true value:

public void doSomething(String payload, boolean highPriority) {
 ...
}

This is now possible in onwards:Camel 2.9

.bean(OrderService.class, "doSomething(*, true)")

In the example above, we defined the first parameter using the wild card symbol *, which tells Camel to bind this parameter to any type, and let Camel
figure this out. The 2nd parameter has a fixed value of . Instead of the wildcard symbol we can instruct Camel to use the message body as shown:true

.bean(OrderService.class, "doSomething(${body}, true)")

The syntax of the parameters is using the expression language so we have to use ${ } placeholders in the body to refer to the message body.Simple

If you want to pass in a value, then you can explicit define this in the method option as shown below:null

.to("bean:orderService?method=doSomething(null, true)")

https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Bean
https://cwiki.apache.org/confluence/display/CAMEL/Simple

Specifying as a parameter value instructs Camel to force passing a value.null null

Besides the message body, you can pass in the message headers as a :java.util.Map

.bean(OrderService.class, "doSomethingWithHeaders(${body}, ${headers})")

You can also pass in other fixed values besides booleans. For example, you can pass in a String and an integer:

.bean(MyBean.class, "echo('World', 5)")

In the example above, we invoke the echo method with two parameters. The first has the content 'World' (without quotes), and the 2nd has the value of 5.
Camel will automatically convert these values to the parameters' types.

Having the power of the language allows us to bind to message headers and other values such as:Simple

.bean(OrderService.class, "doSomething(${body}, ${header.high})")

You can also use the OGNL support of the expression language. Now suppose the message body is an object which has a method named . Simple asXml
To invoke the method we can do as follows:asXml

.bean(OrderService.class, "doSomething(${body.asXml}, ${header.high})")

Instead of using as shown in the examples above, you may want to use instead as shown:.bean .to

.to("bean:orderService?method=doSomething(${body.asXml}, ${header.high})")

Using type qualifiers to select among overloaded methods

Available as of Camel 2.8

If you have a with overloaded methods, you can now specify parameter types in the method name so Camel can match the method you intend to use.Bean
Given the following bean:

 from("direct:start")
 .bean(MyBean.class, "hello(String)")
 .to("mock:result");

Then the has 2 overloaded methods with the names and . So if we want to use the method which has 2 parameters we can do as MyBean hello times
follows in the Camel route:

from("direct:start")
 .bean(MyBean.class, "hello(String,String)")
 .to("mock:result");

We can also use a as wildcard so we can just say we want to execute the method with 2 parameters we do*

 from("direct:start")
 .bean(MyBean.class, "hello(*,*)")
 .to("mock:result");

By default Camel will match the type name using the simple name, e.g. any leading package name will be disregarded. However if you want to match
using the FQN, then specify the FQN type and Camel will leverage that. So if you have a and you want to match against the FQN, com.foo.MyOrder
and the simple name "MyOrder", then follow this example:not

.bean(OrderService.class, "doSomething(com.foo.MyOrder)")

https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Simple
https://cwiki.apache.org/confluence/display/CAMEL/Bean

Camel currently only supports either specifying parameter binding or type per parameter in the method name option. You specify both at the same cannot
time, such as

 doSomething(com.foo.MyOrder ${body}, boolean ${header.high})

This may change in the future.

	Bean Binding

