
KIP-70: Revise Partition Assignment Semantics on New
Consumer's Subscription Change

Motivation
Public Interfaces
Proposed Changes

Examples
Topic Subscription

Existing Semantics
Suggested Semantics

Regex Subscription
Existing Semantics
Suggested Semantics

Compatibility, Deprecation, and Migration Plan
Test Plan
Rejected Alternatives

Status
Current state: Committed

Discussion thread: here

JIRA: KAFKA-4033

Released: 0.10.1.0

This KIP was co-authored with and .Jason Gustafson Ewen Cheslack-Postava

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
The idea behind this KIP was initiated as a result of the discussion on the pull request for KAFKA-3664. The original issue reported in was about the JIRA
offsets of partitions not being committed when a consumer unsubscribes from them. Specifically, when users are using group management, if they call con

 or to change the subscription, the removed subscriptions will be immediately removed and their sumer.subscribe() consumer.unsubscribe()
offset will not be committed. The fix provided in the corresponding pull request includes performing a in and commitAsync() subscribe() unsubscrib

 methods to trigger an offset commit only when auto commit is enabled for the consumer. This solution maintains the current invariants as far as e()
consistency between the assignment and offset commits, and it addresses the main problem from the JIRA, which is basically that users will see
duplicates when they change subscriptions with auto commit enabled. For users who are using manual commit, they will have to call prior commitSync()
to changing their subscription, but that seems reasonable.

But if we consider the issue reported in the JIRA more carefully, we conclude that the root cause is consumer assi
 that is currently updated immediately upon subscription changes . This behavior is something that gnment (e.g. through , then , and finally this call this this)

can be improved due to following reasons ():reference

There is no known pattern for application development that would rely on the current behavior where the assignment is filtered immediately.
The current behavior seems error prone with respect to resource cleanup since it is not unreasonable for a user to expect symmetric calls to onPa

 and .rtitionsAssigned onPartitionsRevoked
The behavior today is inconsistent between subscriptions that are a list of topics and regex subscriptions: when you , the set a regex subscription
assignment is filtered immediately after the subscription change.not
Very few people probably rely on the intersection of functionality that would be affected: they would have to both pass in a ConsumerRebalance

, make subscription changes, and rely on the callback returning the filtered list.Listener

Fixing this behavior would likely change the solution provided in the JIRA's pull request.

Examples below should further clarify the problem, and the suggested semantics change.

Public Interfaces
There are no new public interfaces introduced by this KIP, but it does make a subtle change to the semantics of the consumer's API as subscribe
discussed below.

http://mail-archives.apache.org/mod_mbox/kafka-dev/201607.mbox/%3cOF3260394E.721EA7B6-ON00257FF6.0004E8AB-88257FF6.000514C4@notes.na.collabserv.com%3e
https://issues.apache.org/jira/browse/KAFKA-4033
https://cwiki.apache.org/confluence/display/~hachikuji
https://cwiki.apache.org/confluence/display/~ewencp
https://github.com/apache/kafka/pull/1363
https://issues.apache.org/jira/browse/KAFKA-3664
https://issues.apache.org/jira/browse/KAFKA-3664
https://github.com/apache/kafka/blob/cdf019a8249f95bb0080202b6f806a292a9dc8ef/clients/src/main/java/org/apache/kafka/clients/consumer/KafkaConsumer.java#L803
https://github.com/apache/kafka/blob/d7de59a579af5ba4ecb1aec8fed84054f8b86443/clients/src/main/java/org/apache/kafka/clients/consumer/internals/SubscriptionState.java#L100
https://github.com/apache/kafka/blob/d7de59a579af5ba4ecb1aec8fed84054f8b86443/clients/src/main/java/org/apache/kafka/clients/consumer/internals/SubscriptionState.java#L108
https://github.com/apache/kafka/pull/1363#issuecomment-224374091
https://github.com/apache/kafka/blob/0.10.0/clients/src/main/java/org/apache/kafka/clients/consumer/internals/SubscriptionState.java#L170

Proposed Changes
The new consumer's implementation of and interfaces are modified. In the case of topic subscribe, it does not cause an topics subscribe unsubscribe
immediate assignment update (this is how the is implemented); instead, the assignment remains valid until it has been revoked regex subscribe interface
in the next rebalance. In the case of unsubscribe, consumed offsets are committed immediately before clearing the assignment. This is mostly about fixing
an inconsistent behavior. The examples below show this inconsistency and how this KIP proposes to resolve it.

Examples

In the following examples assume the cluster contains only two topics and , each with a single partition.foo bar

Topic Subscription

Existing Semantics

consumer.subscribe(Arrays.asList("foo", "bar"))
System.out.println(consumer.assignment()); // prints []

consumer.poll(0)
 --> onPartitionsRevoked([])
 --> onPartitionsAssigned([(foo, 0), (bar,0)])
System.out.println(consumer.assignment()); // prints [(foo, 0), (bar, 0)]

consumer.subscribe(Arrays.asList("foo"))
System.out.println(consumer.assignment()); // prints [(foo, 0)]

consumer.poll(0)
 --> onPartitionsRevoked([(foo, 0)])
 --> onPartitionsAssigned([(foo, 0)])
System.out.println(consumer.assignment()); // prints [(foo, 0)]

Suggested Semantics

consumer.subscribe(Arrays.asList("foo", "bar"))
System.out.println(consumer.assignment()); // prints []

consumer.poll(0)
 --> onPartitionsRevoked([])
 --> onPartitionsAssigned([(foo, 0), (bar,0)])
System.out.println(consumer.assignment()); // prints [(foo, 0), (bar, 0)]

consumer.subscribe(Arrays.asList("foo"))
System.out.println(consumer.assignment()); // prints [(foo, 0), (bar, 0)] # notice the change

consumer.poll(0)
 --> onPartitionsRevoked([(foo, 0), (bar, 0)]) // # notice the change
 --> onPartitionsAssigned([(foo, 0)])
System.out.println(consumer.assignment()); // prints [(foo, 0)]

Regex Subscription

Existing Semantics

https://github.com/apache/kafka/blob/0.10.0/clients/src/main/java/org/apache/kafka/clients/consumer/KafkaConsumer.java#L795
https://github.com/apache/kafka/blob/0.10.0/clients/src/main/java/org/apache/kafka/clients/consumer/KafkaConsumer.java#L865
https://github.com/apache/kafka/blob/0.10.0/clients/src/main/java/org/apache/kafka/clients/consumer/KafkaConsumer.java#L850

consumer.subscribe(Pattern.compile("..."))
System.out.println(consumer.assignment()); // prints []

consumer.poll(0)
 --> onPartitionsRevoked([])
 --> onPartitionsAssigned([(foo, 0), (bar,0)])
System.out.println(consumer.assignment()); // prints [(foo, 0), (bar, 0)]

consumer.subscribe(Pattern.compile("f.."))
System.out.println(consumer.assignment()); // prints [(foo, 0), (bar, 0)]

consumer.poll(0)
 --> onPartitionsRevoked([(foo, 0)])
 --> onPartitionsAssigned([(foo, 0)])
System.out.println(consumer.assignment()); // prints [(foo, 0)]

Suggested Semantics

consumer.subscribe(Pattern.compile("..."))
System.out.println(consumer.assignment()); // prints []

consumer.poll(0)
 --> onPartitionsRevoked([])
 --> onPartitionsAssigned([(foo, 0), (bar,0)])
System.out.println(consumer.assignment()); // prints [(foo, 0), (bar, 0)]

consumer.subscribe(Pattern.compile("f.."))
System.out.println(consumer.assignment()); // prints [(foo, 0), (bar, 0)]

consumer.poll(0)
 --> onPartitionsRevoked([(foo, 0), (bar, 0)]) // # notice the change
 --> onPartitionsAssigned([(foo, 0)])
System.out.println(consumer.assignment()); // prints [(foo, 0)]

Compatibility, Deprecation, and Migration Plan
Impacted users: Only those who currently rely on passing a , making a call to ConsumerRebalanceListener consumer's topics subscribe

, and expecting an updated assignment in the callback are impacted. The number of users who rely on this specific use case is expected interface
to be minimal to zero.

Test Plan
Describe in few sentences how the KIP will be tested. We are mostly interested in system tests (since unit-tests are specific to implementation details).
How will we know that the implementation works as expected? How will we know nothing broke?

Rejected Alternatives

If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is
to motivate why the design is the way it is and not some other way.

https://github.com/apache/kafka/blob/0.10.0/clients/src/main/java/org/apache/kafka/clients/consumer/KafkaConsumer.java#L795
https://github.com/apache/kafka/blob/0.10.0/clients/src/main/java/org/apache/kafka/clients/consumer/KafkaConsumer.java#L795

	KIP-70: Revise Partition Assignment Semantics on New Consumer's Subscription Change

