
FLIP-2: Extending Window Function Metadata

Status
Motivation
Proposed Changes

New ProcessWindowFunction
Required Changes

Future Changes based on this FLIP
Adding a Window-Firing Counter
Adding a Window-Firing "Reason"

Test Plan
Rejected Alternatives

Status
Discussion thread https://www.mail-archive.com/dev%40flink.apache.org/msg09285.html

Vote thread

JIRA - FLINK-4997 Getting issue details... STATUS

Release 1.3

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Right now, in Flink a WindowFunction does not get a lot of information when a window fires.

The signature of WindowFunction is this:

public interface WindowFunction<IN, OUT, KEY, W extends Window> extends Function, Serializable {
 void apply(KEY key, W window, Iterable<IN> input, Collector<OUT> out);
}

i.e , the user code only has access to the key for which the window fired, the window for which we fired and the data of the window itself. In the future, we
might like to extend the information available to the user function. We initially propose this as additional information:

Why/when did the window fire. Did it fire on time, i.e. when the watermark passed the end of the window. Did it fire early because of a speculative
early trigger or did it fire on late-arriving data.
How many times did we fire before for the current window. This would probably be an increasing index, such that each firing for a window can be
uniquely identified.

Public Interfaces
New class ProcessWindowFunction with extensible interface
New overload of WindowedStream.apply() that takes the new window function

Proposed Changes

New ProcessWindowFunction

We propose to add a new window function that has an extensible interface so that we can easily add more meta information in the future. The initial
signature would be this:

https://www.mail-archive.com/dev%40flink.apache.org/msg09285.html
https://issues.apache.org/jira/browse/FLINK-4997

public abstract class ProcessWindowFunction <IN, OUT, KEY, W extends Window> implements Function {

 public abstract void process(KEY key, Context ctx, Iterable<IN> elements, Collector<OUT> out) throws
Exception;

 public abstract class Context {
 public abstract W window();
 }
}

The context object has the same information as but can be extended in the future.WindowFunction

Required Changes

Internally the WindowFunction that a user uses is already decoupled from the windowing internals. Internally an InternalWindowFunction is used. Normally,
an InternalWindowFunction wraps a WindowFunction. We propose to change InternalWindowFunction to match the newly proposed interface. It can still be
used to present the current interface to WindowFunction while we can now also support the new ProcessWindowFunction. This is necessary because we
cannot break the current API around WindowFunction.

Future Changes based on this FLIP

Adding a Window-Firing Counter

This requires to extend the Context given to the ProcessWindowFunction like this:

public abstract class Context {
 public abstract W window();
 public abstract int id();
}

where the new id() method gives the id/count of the current window firing.

For keeping track of the count, the WindowOperator will need to keep additional state. Right now, the window elements are kept in a state that is accessed
using this state descriptor:

protected final StateDescriptor<? extends AppendingState<IN, ACC>, ?>
windowStateDescriptor;

The additional state can be a simple counter, such as:

protected final ValueStateDescriptor<Integer> windowIdDescriptor;

that will have to be updated when firing windows and that will have to be garbage collected when the window state is being garbage collected.

Adding a Window-Firing "Reason"

This requires to extend the Context given to the ProcessWindowFunction like this:

public abstract class Context {
 public abstract W window();
 public abstract int id();
 public abstract FiringInfo firingInfo();
}

FiringInfo would be an enum that , , EARLY ON_TIME LATE. That information could be derived from changes in the watermark and does not require
keeping extra state in the window operator.

Compatibility, Deprecation, and Migration Plan

The new interface will not impact users of the existing WindowFunction
We can deprecate the old in Flink 2.0, if we wantWindowFunction

Test Plan
Describe in few sentences how the FLIP will be tested. We are mostly interested in system tests (since unit-tests are specific to implementation details).
How will we know that the implementation works as expected? How will we know nothing broke?

Rejected Alternatives
If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is to motivate why the design is the way it is
and not some other way.

	FLIP-2: Extending Window Function Metadata

