
Debugging Impala Core Dumps on Another System
Background

For debugging problems on remote systems, it can be a pain to use if they are generated by a different Linux flavour (e.g. CentOS vs Ubuntu). core dumps
Different OS distributions and version have different system shared libraries from the Centos machines, so the symbols in those libraries are useless and
make it impossible to get stack traces in many circumstances.

Core files can, however, be "remotely" if we grab the required libraries and debug symbols from the remote system.debugged

Procedure

On the system where impalad crashed:

Find out the shared libraries referenced by impalad

gdb -c core /path/to/impalad

(gdb) info shared

Take this list of .so's and tar them up, being sure to follow symlinks:

tar chvzf so.tar.gz <list of so files>

Copy the file, impalad, impalad. , and so.tar.gz files in the jira directory on impala-desktop.core debug

On the system where you'll :debug

Extract the so files to a directory

tar xvf so.tar.gz

Launch GDB

gdb impalad

That should find and load symbols from impalad. automatically.debug
If symbols look messed up after this, you can try combining the and files into one using the impalad impalad.debug eu-unstrip
tool (usually found in the elfutils package).

eu-unstrip -o impalad.full impalad impalad.debug

gdb impalad.full

Tell gdb to look for the copied so's rather than the system so's

(gdb) set sysroot /path/to/extracted/so/tar

Now load the core file

(gdb) core core

You should now be able to move around and debug the core file as normal!

	Debugging Impala Core Dumps on Another System

