Bigtop ClI Setup Guide

This document is for you to quickly setup CI jobs to ensure the quality of your own customized Bigtop distribution.
Notice that, the document assume you already know well how to use Jenkins, hence the instructions are brief.
If you have questions, feel free to ask on Bigtop mailing list(user@bigtop.apache.org). '~

Apache Bigtop is managing its own setup of Cl system. We have 1 master + 4 slaves total. There's one 1T storage assigned to master, and another 2 *
800G go to two of the slaves (06 and 07), respectively. Other two nodes (02 and 03) got 200G for each node to operate therefore they are reserved to run
non storage sensitive jobs such as provisioner.

Setup a Jenkins master
Setup Jenkins slaves
Setup Bigtop packages build matrix
Setup Bigtop deployments build matrix
Setup Bigtop smoke tests build matrix
Advanced part: Setup a SSL secured Jenkins master
O Generating a SSL cert
© Generating first cert
© Enabling of SSL
© Renewing the cert

Setup a Jenkins master

If you already have a managed Jenkins/Hudson, or you prefer your all installation, skip and go to Setup Bigtop packages build matrix

To setup a Jenkins master by leveraging Docker, do the following:

create jenkins user on host machine with uid=1000 to nmap the jenkins uid inside jenkins i mage
sudo adduser jenkins -u 1000

sudo yuminstall -y docker git
sudo su - jenkins -c "git config --global user.email \"jenki ns@i gtop.apache.org\""
sudo su - jenkins -c "git config --global user.name \"jenkins\""

sudo usernmod -a -G docker jenkins
sudo service docker start
docker run -d --nane jenkins-master -p 8080:8080 -v /hone/jenkins:/var/jenkins_hone jenkins/jenkins:|atest

And the needed Plugin(s):

® git plugin

Setup Jenkins slaves

Assuming that you are going to add or replace an Amazon EC2 instance which have already been created with Amazon Linux 2 AMI, execute the following
commands in that node:

/'l Install Docker and Docker Conpose (execute as ec2-user)

sudo yum update -y

sudo yuminstall -y docker git java ruby

sudo anmzon-linux-extras install -y docker # to nmake sure the |atest version of docker is installed

sudo service docker start

sudo curl -L "https://github.com docker/conpose/rel eases/ downl oad/ 1. 27. 4/ docker - conpose- $(unane -s)-$(unane -
" -0 /usr/local/bin/docker-conpose

sudo chmod +x /usr/1 ocal/bin/ docker-conpose

R R R R N

/] Create jenkins user and setup SSH auth so that Jenkins master can connect to this node

sudo adduser jenkins

sudo usernod -aG docker jenkins
sudo -i

su - jenkins

nkdir .ssh

cat << EOF > .ssh/authorized_keys
(MASTER_PUBLI C_KEY_HERE)

EOF

chnod 700 .ssh

chnod 400 . ssh/aut hori zed_keys

$h BV VB H PN O

/1 Make sure Docker and Docker Conpose work for jenkins user, and login to
/| Docker Hub so that Docker-related Jenkins jobs can push generated images
$ docker run hello-world

$ docker - conpose version

$ docker login --usernane bigtop

Then add the node or update its configuration (e.g., FQDN) via Jenkins. In the latter case, you may have to disconnect and relaunch agent so that Jenkins
recognizes the change.

NOTE: Some AMI (e.g., Amazon Linux 2) uses 1000 as a UID for the default user, but it conflicts our Docker image, which assigns Jenkins to UID 1000,
and causes permission issue when building packages inside the container. In this case, reassign Jenkins to 1000 and the default user to another UID.

Setup Bigtop packages build matrix

Create a new job:
® New Item -> Multi-configuration project

In Source Code Management section, fill in your repo and the branch, for example:

Repository URL: https://gitbox.apache. org/repos/asf/bigtop.git
Branch Specifier: master

In the Configuration Matrix section, add a user defined axis with following name and values:

Name: BUI LD_ENVI RONMVENTS

Val ues:

cent os-6
centos-7

f edor a- 25
ubunt u- 16. 04
debi an- 8
opensuse-42.1

Add another user defined axis:

Name: COVPONENTS

Val ues:

bi gt op- gr oovy
bi gt op-j svc
bi gt op-t ontat
bi gt op-utils
crunch

dat afu

flume

gi raph
hadoop

hama

hbase

hi ve

hue

i gni t e- hadoop
kaf ka

kite

mahout

oozi e
phoeni x

pi g

solr

spar k

sgoop

sqoop?2
tachyon

tez

ycsb
zookeeper

Finally, add a shell build step with the following script:
docker run --rm-v “pwd :/ws --workdir /ws bigtop/slaves:trunk-$BU LD_ENVI RONVENTS \

bash -1 -c './gradlew allclean $COVMPONENTS- pkg

The result will be looked like this:
https://ci.bigtop.apache.org/view/Packages/job/Bigtop-trunk-packages/

However, do aware that full matrix build of packages is time consuming, and they need roughly 50GB disk space for each build.

Setup Bigtop deployments build matrix
To setup a deployments build matrix, prepare a job like above in packages build matrix and add these defined axis:
Name: OS
Val ues
cent 0s6
cent os7

debi an8
ubunt u_xeni a

See the sample configs in bigtop/provisioner/docker.

https://ci.bigtop.apache.org/view/Packages/job/Bigtop-trunk-packages/

Name: COVPONENTS

Val ues:

al l uxio
apex
crunch
flink
flune

gi raph

i gni te_hadoop
hbase
hcat

hi ve
httpfs
hue
mahout
nmapr ed- app
oozie

pi g

gf s

sol rcl oud
spark
sqoop
sqoop2
tez

yarn
zookeeper
ycshb

gpdb
anbari

See the available components for deployment in bigtop-deploy/puppet/hieradata/site.yaml.

Use the following shell script for builds:

destroy previous cluster
./ gradl ew docker - provi si oner - dest r oy

setup configuration file

CONFI G="confi g_${ CS} _Bi gt op-t runk-depl oynents. yam "

sed "s/conponents. */conponents: [hdfs, yarn, napreduce, ${COVPONENTS}]/g" \
provi si oner/docker/confi g_${0OS}.yam > provisioner/docker/ ${ CONFI G

provision

Since the puppet deployment will always return O

we need to save the log and grep error to determ ne status

./ gradl ew - Pconfi g=${ CONFI G -Pnum. i nstances=1 docker-provisioner > tnp.|log 2>&1
cat tnp.log

destroy provisioned cluster
./ gradl ew docker - provi si oner - dest r oy

Fail the build if Errors occur in tnp.log
grep Error tnp.log &% exit 1
exit 0

The result will be looked like this:

https://ci.bigtop.apache.org/view/Provisioner/job/Bigtop-1.2.1-deployments/

You can replace the repo by your own repo by adding sed commend so that your own packages can be tested using the same deployment recipes.

https://ci.bigtop.apache.org/view/Provisioner/job/Bigtop-1.2.1-deployments/

The components is also configurable, choose what you'd like to deploy and test as what you want.

Setup Bigtop smoke tests build matrix

Create a new job:
® New Item -> Multi-configuration project

In Source Code Management section, fill in your repo and the branch, for example:

Repository URL: https://gitbox.apache. org/repos/asf/bigtop.git
Branch Specifier: naster

In the Configuration Matrix section, add axises with following name and values:

User-defined axis:

Nanme: COVPONENTS

Val ues:

hdf s. al | uxi o@l | uxi o

anbari . bi gt op-util s@nbari

hdf s. yar n. apex@pex

flume@ | une

hdf s. hbase@base

hdf s. yarn@dfs. hcfs

hdf s. yarn. hi ve@i ve

hdfs. yarn.ignite_hadoop@ gni t e- hadoop
hdf s. yar n. mahout @ahout

hdf s. yar n@mapr educe
hdfs.yarn. qf s@fs

hdf s. zookeeper . sol rcl oud@ol r
hdf s. yarn. spar k@par k
sqoop@qoop

hdf s. yarn@arn

zookeeper @ookeeper

For each value, the format is defined as DEPLOY_COMPONENTS@TEST_COMPONENETS, where DEPLOY_COMPONENTS cam be period separated
string.

For example,
hdfs. al | uxi o@l | uxi o
Component hdfs and alluxio will be deployed, and alluxio will be tested.

Note: Why use period instead of comma as separator? Because Jenkins does not allow comma to be used in user defined axis.

Slaves aixs:
You got check boxes to check. To add options, go to Manage Jenkins Manage Nodes and add labels for your slaves. The labels will be available here.

The following labels are bigtop's configuration for your reference.
Name: OS

Val ues:

cent os- 7- x86_64- depl oy

f edor a- 26- x86_64- depl oy
debi an- 9- and64- depl oy
ubunt u- 16. 04- and64- depl oy
debi an- 9- ar n64- depl oy
ubunt u- 16. 04- ar n64- depl oy
f edor a- 26- aar ch64- depl oy

In build section, add execute shell:

#!/bi n/ bash -x

Setup configuration file

CONFI G="confi g_${ OS} _Bi gt op- snoke-tests.yam "

DEPLOY_COMPONENTS="echo ${ COMPONENTS} | cut -d '@ -f 1 | sed "s/\\./,/g"
TEST_COMPONENTS="echo ${COMPONENTS} | cut -d '@ -f 2 | sed "s/\\./,/g""
OS_FOR URL="echo ${0S} | awk -F'-" '{ print $1"-"$2"-"$3}' | sed "s@@@""

Adj ust mem based on test target

if [[$DEPLOY_COVPONENTS == *"pmmhout"*]]; then
MEM=6g

fi

The conbi nation of DI STRO X ARCH is conplicated. Resolved in the follow ng | ogic
OS_WO ARCH="echo ${OS} | awk -F"-" '{ print $1"-"$2}"'"
ARCH="echo ${OS} | awk -F"-" '{ print $3}'°
case "${ARCH " in
aar ché4| ar nb64)
ARCH_SUFFI X=" - aar ch64"

ppc64l e| ppc6del)
ARCH_SUFFI X="- ppc64l| e"

x86_64| ani64)
ARCH_SUFFI X=""

*) v
echo "Unsupported arch [${ARCH}]"
exit 1

esac

Determ ne distro for config.yan
case "${CS}" in
cent os-*| f edor a- *| opensuse- *)
DI STRO=cent os
debi an-*| ubunt u- *)
DI STRO=debi an
*) v
echo "Unsupported distro [${OS}]"
exit 1

esac

cat > provisioner/docker/${CONFIG <<-__ EOT__
docker:

nenory_limt: "${MEM -4g}"

i mage: "bigtop/puppet:trunk-${0S_WO ARCH}"

Package Cl is currently broken
repo: https://ci.bigtop.apache. org/view Packages/job/ Bi gt op-trunk-repos/ 0S=${CS}, | abel =docker - sl ave/ ws/ out put
repo: http://repos. bi gtop. apache. org/ rel eases/ 1. 3. 0/ ${ OS_FOR_URL}
di stro: ${D STRG
conmponents: [${ DEPLOY_COVPONENTS}]
enabl e_| ocal _repo: false
snoke_t est _conponents: [${ TEST_COVPONENTS}]
EOT

cat provisioner/docker/ ${ CONFI G

Workaround that files witten inside containers are own by root
docker run --rm-v ${PWD}:/bi gt op-home "bi gtop/ puppet:trunk-${OS_WO ARCH} ${ ARCH SUFFI X}" bash -c "chown -R
${UI D}: ${U D} /bigtop-home"

Provision
(cd provisioner/docker & ./docker-hadoop.sh -d -C ${CONFIG -c 3 -5s)

Destroy provisinoed cluster
(cd provisioner/docker && ./docker-hadoop.sh -d)

Workaround that files witten inside containers are own by root

docker run --rm-v ${PWD}:/bi gt op- home "bi gtop/ puppet:trunk-${OS_WO ARCH} ${ ARCH_SUFFI X}" bash -c "chown -R
${UID}: ${U D} /Dbigtop-hone”

The result will be looked like this:

https://ci.bigtop.apache.org/view/Test/job/Bigtop-trunk-smoke-tests/

There're some limitations for the current implementation hence the script is a bit complicated.

1. Smoke tests running inside docker write files as root, hence files written by smoke tests can't be edited by Jenkins. Currently we work around this
by spinning up a docker to chown files back to be owned by jenkins.
2. Provisioner should be able to decide which distro (centos or debian), however currently is externalized for user to configure it.

Advanced part: Setup a SSL secured Jenkins master

First you need a SSL certificate.

Generating a SSL cert
Here we will use a certificate created by the http://letsencrypt.org service.

Most convient way to run it is as a docker container, so pull the image:

docker pull quay.io/letsencrypt/|etsencrypt:]| atest

Now use this container to sign into letsencrypt. You have to make sure that no other service is running on port 80 and 443. This starts an intermediate
server an handles a challenge response handshake in order to prove that we actually are running http://ci.bigtop.apache.org

docker run --rm-i -t -p 80:80 -p 443:443 -v "/etc/letsencrypt:/etc/letsencrypt” quay.iol/letsencrypt

/l etsencrypt certonly --standal one --enail dev@i gtop.apache.org -d ci.bigtop.apache.org

Please note that this writes into /etc/letsencrypt as root on the host.

Generating first cert

The command does not generate a certificate on first run. It generates new certificate (renewals) each new run. Please be sure that any httpd server is
stopped

docker run --rm-i -t -p 80:80 -p 443:443 -v "/etc/letsencrypt:/etc/letsencrypt” quay.io/letsencrypt
/l etsencrypt certonly --standal one --enmil dev@i gtop.apache.org -d ci.bigtop.apache.org

Please note it created /etc/letsencrypt/live/ci.bigtop.apache.org containing cert and key.

Enabling of SSL

Since the lifetime of the letsencrypt certs is quite short on needs a flexible infrastructure to use the certs as is.

The basic design here is to use a reverse proxy terminating the SSL at the proxy. l.e. All handling of https:// is done by the reverse proxy and requests are
proxied to the web application and sent back to the client.

A quick setup on a RPM based system is:

yuminstall httpd nod_ssl

in /etc/http/conf.d/ssl.conf add this block after the line

https://ci.bigtop.apache.org/view/Test/job/Bigtop-trunk-smoke-tests/
http://letsencrypt.org

<Virtual Host _default_: 443>

(see jenkins documentation about deeper insights into this glibberish)

<Proxy *>
O der deny, al | ow
Al ow from all

</ Proxy>

Pr oxyRequest s O f
Because of JENKI NS-22539

Pr oxyPr eserveHost On
Header edit Location “http://ci.bigtop.apache.org/ https://ci.bigtop.apache. org/

ProxyPass [/ http://local host: 8080/ nocanon
ProxyPassReverse / http://local host: 8080/
Pr oxyRequest s Of

Al | onEncodedSl ashes NoDecode

<Proxy http://1ocal host: 8080/ *>
Order deny, al | ow
Al low fromall

</ Proxy>

This enables the reverse proxy mode of port 433 to port 8080 and setting Jenkins specific parameters.

And the location of the certificates have to be aligned with letsencrypt in /etc/http/conf.d/ssl.conf

Server Certificate:

Point SSLCertificateFile at a PEM encoded certificate. |If

the certificate is encrypted, then you will be pronpted for a
pass phrase. Note that a kill -HUP will pronpt again. A new
certificate can be generated using the genkey(1l) command.

SSLCertificateFile /etc/letsencrypt/livel/ci.bigtop.apache.org/cert.pem

Server Private Key:

If the key is not conbined with the certificate, use this
directive to point at the key file. Keep in mnd that if
you' ve both a RSA and a DSA private key you can configure
both in parallel (to also allow the use of DSA ciphers, etc.)

HOH H R

SSLCertificateKeyFile /etc/letsencrypt/live/ci.bigtop.apache.org/privkey.pem

Server Certificate Chain:

Point SSLCertificateChainFile at a file containing the
concat enati on of PEM encoded CA certificates which formthe
certificate chain for the server certificate. Alternatively
the referenced file can be the same as SSLCertificateFile
when the CA certificates are directly appended to the server
certificate for convinience.

H OB H H O HH

SSLCertificateChainFile /etc/letsencrypt/live/ci.bigtop.apache. org/chain. pem

The last thing is to change jenkins to port 8080 and start apache httpd. Please note, we are running the latest Jenkins LTS to keep up with the security
updates, etc.

docker run -d --nane jenkins-master-2.6 -p 8080:8080 -v /hone/jenkins:/var/jenkins_hone jenkins/jenkins:Its
systenctl start httpd

In order to redirect the browser from http://ci.bigtop.apache.org to https://ci.bigtop.apache.org place a file into /var/www/html/index.html

http://ci.bigtop.apache.org
https://ci.bigtop.apache.org

<META HTTP- EQUI V="r efresh" CONTENT="1; URL=https://ci.bigtop.apache.org">

Renewing the cert

The command does not generate a certificate on first run. It generates new certificate (renewals) each new run. Please be sure that any httpd server is
stopped

service httpd stop

docker stop jenkins-naster

docker run --rm-i -t -p 80:80 -p 443:443 -v "/etc/letsencrypt:/etc/letsencrypt” certbot/certbot renew
docker start jenkins-naster

service httpd start

H OB H R

	Bigtop CI Setup Guide

