
Kafka Streams Join Semantics

Improved Left/Outer Stream-Stream Join (v3.1.x and newer)
KStream-KStream Join

New Join Semantics (v0.10.2.x and newer)
KStream-KStream Join
KStream-KTable Join
KTable-KTable Join
KTable-KTable Foreign-Key Join (v2.4.x and newer)

Old Join Semantics (v0.10.0.x and v0.10.1.x)
KStream-KStream Join
KStream-KTable Join
KTable-KTable Join

Kafka Streams offers a variety of different join operators with three different types:

sliding window KStream-KStream join
KStream-KTable join
KTable-KTable join

Furthermore, there are the different "variants" of joins, namely , , and join (not each stream type offers every variant though). inner left outer

Join semantics are inspired by SQL join semantics, however, because Kafka Streams offers instead of batch processing, semantics do no align stream
completely. In the following, we give a details explanation of the offered join semantics in Kafka Streams.

Below, we describe the semantics of each operator on two input streams/tables. We assume that all messages have the same key in these
examples and thus omit the key to improve readability. For window joins, we assume that all records belong to a single window. Nevertheless,
time (and processing order) is an important factor in stream-joins and thus we also show the timestamp for each record and assume that all records are
processed in timestamp order. The format below will be for each record and indicates a missing value.ts:value null

STREAM_1: 1:null, 3:A, 5:B 7:null, 9:C, 12:null, 15:D
STREAM_2: 2:null, 4:a, 6:b, 8:null, 10:c, 11:null, 13:null, 14:d

Pay attention, that both streams are use as examples for KStream (ie, record stream) and KTable (ie, changelog stream) with different semantics. For
KTable, so-called tombstone records with format are of special interest, as they delete a key (those records are shown as in all examples key:null null
to highlight tombstone semantics). Last but not least, in Kafka Streams each join is "customized" by the user with a function that compute ValueJoiner
the actual result. Hence, we show output records as with X and Y being the left and right value, respectively, given to the value joiner. If the output "X - Y"
is shown as (ie, tombstone message), will not be called because a result record will be deleted.null ValueJoiner

Improved Left/Outer Stream-Stream Join (and newer)v3.1.x

(See) - KAFKA-10847 Getting issue details... STATUS

KStream-KStream Join

This is a sliding window join, ie, all tuples that are "close" to each other with regard to time (ie, time difference up to window size) are joined. The result is a
KStream. The table below shows the output (for each processed input record) for left and outer join only (as inner joins are not subject to spurious join
results). Pay attention, that some input records do not produce output records, and that left/outer output record are emitted with some "delay" (ie, only
emitted after grace-period passed). Also note, that the new behavior requires to set a in the window definition to specify when left/outer join gracePeriod
result should be emitted via or (setting the grace period using the old and now ofTimeDifferenceNoGrace() ofTimeDifferenceWithGrace(...)
deprecated API, , will not result in this new behavior, but will produce the same result as in older releases, JoinWindows.of(...).grace(...) 0.10.2

 to ..x 3.0.x)

In contrast to the later examples, we assume a window size of 15, and a grace period of 5.

ts STREAM_1 (left) STREAM_2 (right) innerJoin (same as in older versions) leftJoin outerJoin

1 null

2 null

3 A

4 a A - a A - a A - a

Prior to version Kafka Streams might emit so called "spurious" left/outer join result. In this section we only explain the different new 3.1.x
behavior that avoids spurious left/outer stream-stream join results. See below that describe all joins in more details, New Join Semantics
including spurious left/output join behavior in versions to . 0.10.2.x 3.0.x

https://issues.apache.org/jira/browse/KAFKA-10847

5 B B - a B - a B - a

6 b A - b

B - b

A - b

B - b

A - b

B - b

7 null

8 null

9 C C - a

C - b

C - a

C - b

C - a

C - b

10 c A - c

B - c

C - c

A - c

B - c

C - c

A - c

B - c

C - c

11 null

12 null

13 null

14 d A - d

B - d

C - d

A - d

B - d

C - d

A - d

B - d

C - d

15 D D - a

D - b

D - c

D - d

D - a

D - b

D - c

D - d

D - a

D - b

D - c

D - d

...

40 E

...

60 F E - null E - null

...

80 f F - null F - null

...

100 G null - f

New Join Semantics (and newer)v0.10.2.x

(See)KIP-77: Improve Kafka Streams Join Semantics

Kafka Streams offers the follow join operators (operators in were added in current trunk, compared to 0.10.1.x and older):bold font

inner join left join outer join

KStream-KStream yes yes yes

KStream-KTable yes yes no

KTable-KTable yes yes yes

KStream-KStream Join

This is a sliding window join, ie, all tuples that are "close" to each other with regard to time (ie, time difference up to window size) are joined. The result is a
KStream. The table below shows the output (for each processed input record) for all three join variants. Pay attention, that some input records do not
produce output records.

The table below marks so called "spurious" left/outer join results, that are in the result in version to , in bold face. Compare 0.10.2.x 3.0.x Improved left
 above for version that avoids spurious results./outer stream-stream join 3.1.x

This section describes the new join semantics as of version . For old join semantics (version and) see 0.10.2.x 0.10.0.x 0.10.1.x Old Join
 below.Semantics

https://cwiki.apache.org/confluence/display/KAFKA/KIP-77%3A+Improve+Kafka+Streams+Join+Semantics

ts STREAM_1 (left) STREAM_2 (right) innerJoin leftJoin outerJoin

1 null

2 null

3 A A - null A - null

4 a A - a A - a A - a

5 B B - a B - a B - a

6 b A - b

B - b

A - b

B - b

A - b

B - b

7 null

8 null

9 C C - a

C - b

C - a

C - b

C - a

C - b

10 c A - c

B - c

C - c

A - c

B - c

C - c

A - c

B - c

C - c

11 null

12 null

13 null

14 d A - d

B - d

C - d

A - d

B - d

C - d

A - d

B - d

C - d

15 D D - a

D - b

D - c

D - d

D - a

D - b

D - c

D - d

D - a

D - b

D - c

D - d

KStream-KTable Join

This is an asymmetric non-window join. The basic semantics is a KTable lookup for each KStream record (while each KTable input record updates the
current KTable view but does never yield any result record). The result is a KStream. Pay attention, that the KTable lookup is done on the KTable current
state, and thus, out-of-order records can yield non-deterministic result. Furthermore, in older version of Kafka Streams there is no guarantee that all
records will be processed in timestamp order (even if processing records in timestamp order is the goal, it is only best effort). The table below shows the
output (for each processed input record) for both offered join variants. Pay attention, that some input records do not produce output records.

In newer versions, Kafka Streams improved timestamp synchronization significantly:

2.1.x and newer: improvements in processing order and introducing config to allow for partial blocking if one input is max.task.idle.ms
empty (cf.)KIP-353: Improve Kafka Streams Timestamp Synchronization
3.0.x and newer: stronger synchronization guarantees to avoid race conditions due to unpredictable consumer fetch behavior (cf. KIP-695:

)Further Improve Kafka Streams Timestamp Synchronization

ts STREAM_1 (left) STREAM_2 (right) leftJoin innerJoin

1 null

2 null

3 A A - null

4 a

5 B B - a B - a

6 b

7 null

8 null

9 C C - null

10 c

https://cwiki.apache.org/confluence/display/KAFKA/KIP-353%3A+Improve+Kafka+Streams+Timestamp+Synchronization
https://cwiki.apache.org/confluence/display/KAFKA/KIP-695%3A+Further+Improve+Kafka+Streams+Timestamp+Synchronization
https://cwiki.apache.org/confluence/display/KAFKA/KIP-695%3A+Further+Improve+Kafka+Streams+Timestamp+Synchronization

11 null

12 null

13 null

14 d

15 D D - d D - d

KTable-KTable Join

This is a symmetric non-window join. The basic semantics is a KTable lookup in the "other" stream for each KTable update. The result is a (continuously
updating) KTable (ie, a changelog stream that can contain tombstone message with format ; those tombstone are shown as in the result <key:null> null
in contrast to results indicating a valid join result with only one join partner). Pay attention, that the KTable lookup is done on the KTable "X - null" current
state, and thus, out-of-order records can yield non-deterministic result. Furthermore, in older versions of Kafka Streams there is no guarantee that all
records will be processed in timestamp order (even if processing records in timestamp order is the goal, it is only best effort).

In newer versions, Kafka Streams improved timestamp synchronization significantly:

2.1.x and newer: improvements in processing order and introducing config to allow for partial blocking if one input is max.task.idle.ms
empty (cf.)KIP-353: Improve Kafka Streams Timestamp Synchronization
3.0.x and newer: stronger synchronization guarantees to avoid race conditions due to unpredictable consumer fetch behavior (cf. KIP-695:

)Further Improve Kafka Streams Timestamp Synchronization

ts left right innerJoin leftJoin outerJoin

1 null

2 null

3 A A - null A - null

4 a A - a A - a A - a

5 B B - a B - a B - a

6 b B - b B - b B - b

7 null null null null - b

8 null null

9 C C - null C - null

10 c C - c C - c C - c

11 null null C - null C - null

12 null null null

13 null

14 d null - d

15 D D - d D - d D - d

16

17 d D - d D - d D - d

KTable-KTable Foreign-Key Join (and newer)v2.4.x

This is a symmetric non-window join. There are two streams involved in this join, the left stream and the right stream, each of which are usually keyed on
different key types. The left stream is keyed on the primary key, whereas the right stream is keyed on the foreign key. Each element in the left stream has
a foreign-key extractor function applied to it, which extracts the foreign key. The resultant left-event is then joined with the right-event keyed on the
corresponding foreign-key. Updates made to the right-event will also trigger joins with the left-events containing that foreign-key. It can be helpful to think
of the left-hand materialized stream as containing a foreign key, and the right-hand materialized stream as keyed on the foreign key.events entities

KTable lookups are done on the KTable state, and thus, out-of-order records can yield non-deterministic result. Furthermore, in older versions of current
Kafka Streams there is no guarantee that all records will be processed in timestamp order (even if processing records in timestamp order is the goal, it is
only best effort).

KTable Cache

If you want to observe the below described behavior, you will most likely need to disable deduplication cache, by setting KTable cache.max.
 in . Otherwise, the deduplication cache will "swallow" many of the produced result records and it will be bytes.buffering=0 StreamsConfig

hard to reason about the actual join behavior.

http://max.task.idle.ms
https://cwiki.apache.org/confluence/display/KAFKA/KIP-353%3A+Improve+Kafka+Streams+Timestamp+Synchronization
https://cwiki.apache.org/confluence/display/KAFKA/KIP-695%3A+Further+Improve+Kafka+Streams+Timestamp+Synchronization
https://cwiki.apache.org/confluence/display/KAFKA/KIP-695%3A+Further+Improve+Kafka+Streams+Timestamp+Synchronization

In newer versions, Kafka Streams improved timestamp synchronization significantly:

2.1.x and newer: improvements in processing order and introducing config to allow for partial blocking if one input is max.task.idle.ms
empty (cf.)KIP-353: Improve Kafka Streams Timestamp Synchronization
3.0.x and newer: stronger synchronization guarantees to avoid race conditions due to unpredictable consumer fetch behavior (cf. KIP-695:

)Further Improve Kafka Streams Timestamp Synchronization

The workflow of LHS-generated changes to outputs is shown below. Each step is cumulative with the previous step. Only LEFT and INNER joins are
supported, and their outputs are shown below.

ts LHS-Stream
(K, extracted-FK)

RHS-Stream State (FK,V) Inner-Join Output Left-Join Output

1 Publish event to LHS (k,1) (1,foo) (k,1,foo) (k,1,foo)

2 Change LHS fk (k,2) (1,foo) (k,null) (k,2,null)

3 Change LHS fk (k,3) (1,foo) (k,null) (k,3,null)

4 Publish RHS entity - (1,foo)
(3,bar)

(k,3,bar) (k,3,bar)

5 Delete k (k,null) (1,foo)
(3,bar)

(k,null) (k,null,null)

6 Publish original event again (k,1) (1,foo)
(3,bar)

(k,1,foo) (k,1,foo)

7 Publish event to LHS (q,10) (1,foo)
(3,bar)

- (q,null,10)

8 Publish RHS entity - (1,foo)
(3,bar)
(q,baz)

(q,10,baz) (q,10,baz)

Old Join Semantics (and)v0.10.0.x v0.10.1.x
Kafka Streams 0.10.0.x and 0.10.1.x offers the follow join operators:

inner join left join outer join

KStream-KStream yes yes yes

KStream-KTable no yes no

KTable-KTable yes yes yes

KStream-KStream Join

This is a sliding window join, ie, all tuples that are "close" to each other with regard to time (ie, time difference up to window size) are joined. The result is a
KStream. The table below shows the output (for each processed input record) for all three join variants. Pay attention, that some input records do not
produce output records.

ts STREAM_1 (left) STREAM_2 (right) innerJoin leftJoin outerJoin

1 null null - null null - null

2 null null - null

3 A A - null A - null

4 a A - a A - a

5 B B - a B - a B - a

6 b A - b

B - b

A - b

B - b

7 null null - a

null - b

null - a

null - b

null - a

null - b

8 null A - null

B - null

A - null

B - null

http://max.task.idle.ms
https://cwiki.apache.org/confluence/display/KAFKA/KIP-353%3A+Improve+Kafka+Streams+Timestamp+Synchronization
https://cwiki.apache.org/confluence/display/KAFKA/KIP-695%3A+Further+Improve+Kafka+Streams+Timestamp+Synchronization
https://cwiki.apache.org/confluence/display/KAFKA/KIP-695%3A+Further+Improve+Kafka+Streams+Timestamp+Synchronization

9 C C - a

C - b

C - a

C - b

C - a

C - b

10 c A - c

B - c

C - c

A - c

B - c

C - c

11 null A - null

B - null

C - null

A - null

B - null

C - null

12 null null - a

null - b

null - c

null - a

null - b

null - c

null - a

null - b

null - c

13 null A - null

B - null

C - null

A - null

B - null

C - null

14 d A - d

B - d

C - d

A - d

B - d

C - d

15 D D - a

D - b

D - c

D - d

D - a

D - b

D - c

D - d

D - a

D - b

D - c

D - d

KStream-KTable Join

This is an asymmetric non-window join. The basic semantics is a KTable lookup for each KStream record. The result is a KStream. Pay attention, that the
KTable lookup is done on the KTable state, and thus, out-of-order records can yield non-deterministic result. Furthermore, in practice Kafka current
Streams does not guarantee that all records will be processed in timestamp order (even if processing records in timestamp order is the goal, it is only best
effort). The table below shows the output (for each processed input record) for both offered join variants. Pay attention, that some input records do not
produce output records.

ts STREAM_1 (left) STREAM_2 (right) leftJoin

1 null null - null

2 null

3 A A - null

4 a

5 B B - a

6 b

7 null null - b

8 null

9 C C - null

10 c

11 null

12 null null - null

13 null

14 d

15 D D - d

KTable-KTable Join

This is a symmetric non-window join. The basic semantics is a KTable lookup in the "other" stream for each KTable update. The result is a (continuously
updating) KTable (ie, a changelog stream that can contain tombstone message with format ; those tombstone are shown as in the result <key:null> null
in contrast to results indicating a valid join result with only one join partner). Pay attention, that the KTable lookup is done on the KTable "X - null" current
state, and thus, out-of-order records can yield non-deterministic result. Furthermore, in practice Kafka Streams does not guarantee that all records will be
processed in timestamp order (even if processing records in timestamp order is the goal, it is only best effort).

ts STREAM_1 (left) STREAM_2 (right) innerJoin leftJoin outerJoin

1 null null null null

2 null null null null

3 A null A - null A - null

4 a A - a A - a A - a

5 B B - a B - a B - a

6 b B - b B - b B - b

7 null null null null - b

8 null null null null

9 C null C - null C - null

10 c C - c C - c C - c

11 null null C - null C - null

12 null null null null

13 null null null null

14 d null null null - d

15 D D - d D - d D - d

16

17 d D - d D - d D - d

KTable Cache

If you want to observe the below described behavior, you will most likely need to disable deduplication cache (for Kafka), by KTable 0.10.1.x
setting in . Otherwise, the deduplication cache will "swallow" many of the produced result cache.max.bytes.buffering=0 StreamsConfig
records and it will be hard to reason about the actual join behavior.

	Kafka Streams Join Semantics

