Connect Transforms - Proposed Design
Java API

public interface Transformabl eRecor d<R extends Transfornmabl eRecord<R>> { // Inplenented by SourceRecord and
Si nkRecor d

String topic();
Schema keySchena();
bj ect key();

Schena val ueSchena();
oj ect val ue();

Long tinmestanp();

R newRecord(String topic, Schema keySchenm, bject key, Schema val ueSchemn, Object value, Long timestanp);

public interface Transformati on<R extends Transformabl eRecor d<R>> {
void init(Map<String, String> config);
R appl y(R record);
void close();

ConfigbDef config();

Configuration

A transformation chain will be configured at the connector-level. The order of transformations is defined by the t r ansf or ms config which represents a list
of aliases.

An alias in t r ansf or s implies that some additional keys are configurable:

® transforms. $al i as. type —fully qualified class name for the transformation
® transforns. $al i as. * — all other keys as defined in Tr ansf or mat i on. confi g() are embedded with this prefix

Example:

transforns=t sRout er, i nsert Kaf kaCoor di nat es

transforms. t sRout er. t ype=or g. apache. kaf ka. connect . transf orns. Ti nest anpRout er
transforms.tsRouter.topic.fornat=${topic}-${tinestanp}
transformns. tsRouter. ti mestanp. f or mat =yyyyMvid

transforns. insert Kaf kaCoor di nat es. t ype=or g. apache. kaf ka. connect . transf orns. | nsert | nVal ue
transformns. i nsertKaf kaCoor di nat es. t opi c=kaf ka_t opi c

transforns. i nsert Kaf kaCoor di nat es. partition=kaf ka_partition

transformns. i nsert Kaf kaCoor di nat es. of f set =kaf ka_of f set

Application
For source connectors, transformations are applied on results from Sour ceTask. pol | ().

For sink connectors, transformations are applied on the Si nkRecor d before being provided to Si nkTask. put ().



If the result of any Tr ansf or mat i on. appl y() in achainis nul | , that record is discarded (not written to Kafka in the case of a source connector, or not
provided to sink connector).

Sour ceTask. pol | () Transformation. appl y()* ? Converter. fronConnect Dat a()
Kaf ka
Kaf ka Converter.toConnect Dat a() Transfornation. appl y()* Si nkTask.
put ()
Features

® Backwards compatible - no breaking change in the current APIs is required. Transformation is an additional layer at the edge of record exchange
between the framework and connectors.
® Pluggable - initialized and configured somewhat similarly to Converters
® Stackable - can be chained in a defined order
® Fairly flexible - within the constraints of the Tr ansf or mabl eRecor d APl and 1:{0,1} mapping
©  Any kind of filtering, renaming, masking operations on the data, adding fields, etc.
© Filtering of records from the stream.
© Routing for both source and sink - sink connectors can also just operate on the Tr ansf or nabl eRecor d. t opi ¢ since the target
'‘bucket’ (table, index, etc.) in always a function of that.
© For any transformation that requires access to certain fields not exposed on the Tr ansf or mabl eRecor d i.e. { Sour ceRecor d,
Si nkRecord} . kaf kaPartition, Si nkRecord. kaf kaOf f set, or Si nkRecor d. ti nest anpType — it can set the R type parameter
to specifically be Sour ceRecor d and Si nkRecor d and use the relevant constructors instead of newRecor d() . It can also just cast
internally if an optional functionality requires access to such a field.

Example transformations

List of example transformations to demonstrate broad applicability - not in any particular order, and some more thought-through than others. We may want
to include some of these with Connect itself to provide some useful out-of-the-box functionality and encourage standard ways to perform these
transformations.

® Mask
© Masks primitive fields: obscure sensitive info like credit card numbers.
© Configure with list of fields to randomize or clobber.
® Flatten
O Flatten nested St r uct s inside a top-level St r uct , omitting all other non-primitive fields. Useful for connectors that can only deal with
flat St r uct s like Confluent's JDBC Sink.
© Configure with delimiter to use when flattening field names.
® Repl ace
© Filter and rename fields. Useful for lightweight data munging.
© Configure with whitelist and/or blacklist, map of fields to rename.
® NunericCasts
© Casting of numeric field to some numeric type, useful in conjunction with source connectors that don't have enough information.
© Configure with map of field to type (i.e. boolean, int8, int16, int32, int64, float32, float64).
® Ti nest anpRout er
o Useful for temporal data e.g. application log data being indexed to Elasticsearch with a sink connector can be routed to a daily index.
o Configure with Si npl eDat eFor mat -compatible timestamp format string, and a format string for the renamed t opi ¢ that can have
placeholders for original topic and the timestamp.
® Insert
o Allow inserting into a top-level St r uct record-level fields like the t opi ¢, parti tion, of f set, ti mest anp. Can also allow a UUID
field to be inserted.
© Configure with names for desired fields.
® RegexRout er
© Regex-based routing. There are too many inconsistent configs to route in different connectors.
O Configure with matcher regex and replacement that can contain capture references.
® Ti mest anpConverter
© Timestamps are represented in a ton of different ways; provide a transformation from going between strings, epoch times as longs, and
Connect date/time types.
© Configure with field name and desired type.
® Hoi st ToStruct
© Wrap dataina Struct.
O Configure with schema name for the St r uct schema and field name to insert the original data as.
® Extract FronStruct
o Extract a specific field from a St ruct .
© Configure with field name.
® Val ueToKey
o Useful when a source connector does not populate the Sour ceRecor d key but only the value with a St r uct .
© Configure with list of field names to hoist into the record key as a primitive (single field ) / St r uct (multiple fields), and a flag to force
wrapping in a St r uct even when it is a single field.

Patterns for data transformations



® Data transformations could be applicable to the key or the value of the record. We could have *Key and *Val ue variants for these transformations
that reuse the common functionality.
® Some common utilities for data transformations will probably shape up:
O Cache the changes they make to Schena objects, possibly only preserving last-seen one as the likelihood of source data Schena
changing is low.
© Copying of Schenm objects with the possible exclusion of some fields, which they are modifying.
© Likewise, copying of St r uct object to another St r uct having a different Schema with the exception of some fields, which they are
modifying.
© Where fields are being added and a field name specified in configuration, we may want a consistent way to convey if it should be created
as an optional field. E.g. a leading '?' character.
®* Where field names are expected, we may want to allow for getting at nested fields by allowing a dotted syntax which is common in such usage
(and accordingly, will need some reusable utilities around accessing a field that may be nested). Also implies actual dots in field names will need
escaping.



	Connect Transforms - Proposed Design

