
Connect Transforms - Proposed Design
Java API

public interface TransformableRecord<R extends TransformableRecord<R>> { // Implemented by SourceRecord and
SinkRecord

 String topic();

 Schema keySchema();

 Object key();

 Schema valueSchema();

 Object value();

 Long timestamp();

 R newRecord(String topic, Schema keySchema, Object key, Schema valueSchema, Object value, Long timestamp);

}

public interface Transformation<R extends TransformableRecord<R>> {

 void init(Map<String, String> config);

 R apply(R record);

 void close();

 ConfigDef config();

}

Configuration

A transformation chain will be configured at the connector-level. The order of transformations is defined by the config which represents a list transforms
of aliases.

An alias in implies that some additional keys are configurable:transforms

transforms.$alias.type – fully qualified class name for the transformation
transforms.$alias.* – all other keys as defined in are embedded with this prefixTransformation.config()

Example:

transforms=tsRouter,insertKafkaCoordinates

transforms.tsRouter.type=org.apache.kafka.connect.transforms.TimestampRouter
transforms.tsRouter.topic.format=${topic}-${timestamp}
transforms.tsRouter.timestamp.format=yyyyMMdd

transforms.insertKafkaCoordinates.type=org.apache.kafka.connect.transforms.InsertInValue
transforms.insertKafkaCoordinates.topic=kafka_topic
transforms.insertKafkaCoordinates.partition=kafka_partition
transforms.insertKafkaCoordinates.offset=kafka_offset

Application

For source connectors, transformations are applied on results from .SourceTask.poll()

For sink connectors, transformations are applied on the before being provided to .SinkRecord SinkTask.put()

If the result of any in a chain is , that record is discarded (not written to Kafka in the case of a source connector, or not Transformation.apply() null
provided to sink connector).

 SourceTask.poll() Transformation.apply()* ? Converter.fromConnectData()
 Kafka

 Kafka Converter.toConnectData() Transformation.apply()* SinkTask.
put()

Features

Backwards compatible - no breaking change in the current APIs is required. Transformation is an additional layer at the edge of record exchange
between the framework and connectors.
Pluggable - initialized and configured somewhat similarly to s Converter
Stackable - can be chained in a defined order
Fairly flexible - within the constraints of the API and 1:{0,1} mappingTransformableRecord

Any kind of filtering, renaming, masking operations on the data, adding fields, etc.
Filtering of records from the stream.
Routing for both source and sink - sink connectors can also just operate on the since the target TransformableRecord.topic
'bucket' (table, index, etc.) in always a function of that.
For any transformation that requires access to certain fields not exposed on the i.e. TransformableRecord {SourceRecord,

, , or – it can set the R type parameter SinkRecord}.kafkaPartition SinkRecord.kafkaOffset SinkRecord.timestampType
to specifically be and and use the relevant constructors instead of . It can also just cast SourceRecord SinkRecord newRecord()
internally if an optional functionality requires access to such a field.

Example transformations

List of example transformations to demonstrate broad applicability - not in any particular order, and some more thought-through than others. We may want
to include some of these with Connect itself to provide some useful out-of-the-box functionality and encourage standard ways to perform these
transformations.

Mask
Masks primitive fields: obscure sensitive info like credit card numbers.
Configure with list of fields to randomize or clobber.

Flatten
Flatten nested s inside a top-level , omitting all other non-primitive fields. Useful for connectors that can only deal with Struct Struct
flat s like Confluent's JDBC Sink.Struct
Configure with delimiter to use when flattening field names.

Replace
Filter and rename fields. Useful for lightweight data munging.
Configure with whitelist and/or blacklist, map of fields to rename.

NumericCasts
Casting of numeric field to some numeric type, useful in conjunction with source connectors that don't have enough information.
Configure with map of field to type (i.e. boolean, int8, int16, int32, int64, float32, float64).

TimestampRouter
Useful for temporal data e.g. application log data being indexed to Elasticsearch with a sink connector can be routed to a daily index.
Configure with -compatible timestamp format string, and a format string for the renamed that can have SimpleDateFormat topic
placeholders for original topic and the timestamp.

Insert
Allow inserting into a top-level record-level fields like the , , , . Can also allow a UUID Struct topic partition offset timestamp
field to be inserted.
Configure with names for desired fields.

RegexRouter
Regex-based routing. There are too many inconsistent configs to route in different connectors.
Configure with matcher regex and replacement that can contain capture references.

TimestampConverter
Timestamps are represented in a ton of different ways; provide a transformation from going between strings, epoch times as longs, and
Connect date/time types.
Configure with field name and desired type.

HoistToStruct
Wrap data in a .Struct
Configure with schema name for the schema and field name to insert the original data as.Struct

ExtractFromStruct
Extract a specific field from a .Struct
Configure with field name.

ValueToKey
Useful when a source connector does not populate the key but only the value with a SourceRecord Struct.
Configure with list of field names to hoist into the record key as a primitive (single field) / (multiple fields), and a flag to force Struct
wrapping in a even when it is a single field.Struct

Patterns for data transformations

Data transformations could be applicable to the key or the value of the record. We could have * and * variants for these transformations Key Value
that reuse the common functionality.
Some common utilities for data transformations will probably shape up:

Cache the changes they make to objects, possibly only preserving last-seen one as the likelihood of source data Schema Schema
changing is low.
Copying of objects with the possible exclusion of some fields, which they are modifying.Schema
Likewise, copying of object to another having a different with the exception of some fields, which they are Struct Struct Schema
modifying.
Where fields are being added and a field name specified in configuration, we may want a consistent way to convey if it should be created
as an optional field. E.g. a leading '?' character.

Where field names are expected, we may want to allow for getting at nested fields by allowing a dotted syntax which is common in such usage
(and accordingly, will need some reusable utilities around accessing a field that may be nested). Also implies actual dots in field names will need
escaping.

	Connect Transforms - Proposed Design

