
KIP-100 - Relax Type constraints in Kafka Streams API

Status
Motivation
Public Interfaces
Proposed Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives
Notes

Status
Current state: Accepted

Discussion thread: here

JIRA: KAFKA-4481

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Several Kafka Streams methods currently take arguments that are functions parameterized in the key and value types to apply various transformations to
KStreams and KTables. Those functions are currently invariant in their input and result types, when they should probably be contravariant in their key /
value input types, and covariant in their result type.

For instance, should be KStream<K, V>.filter(Predicate<K, V> predicate) KStream.filter(Predicate<? super K, ? super V>
 to accept predicates that can act on any supertype of , or . More concretely, if extends , and I have predicate) K V Cat Animal Predicate<Animal,

, then I should be able to call Object> animalPredicate KStream<Cat, Picture>.filter(animalPredicate)

Conversely for result types, should be KStream<K, V>.map(ValueMapper<V, R> mapper) KStream<K, V>.map(ValueMapper<? super V,
For example I can apply to . ? extends R> mapper) ValueTransformer<Object, String> toStringTransformer KStream<K,

 and the result can safely be used as either or as Serializable>.map(toStringTransformer) KStream<K, String> KStream<K,
 without relying on unchecked casts.Serializable>

This change will make it easier to write reusable code for transformations, without requiring additional wrappers around existing code, or the unnecessary
use of unchecked casts.

The same reasoning applies to the key, value and result types defined in methods that take , , , Aggregator StreamPartitioner KeyValueMapper Val
, , , , , , and ueMapper ProcessorSupplier TransformerSupplier ValueTransformerSupplier ForeachAction StreamPartitioner ValueJo

.iner

Public Interfaces
Affected methods Current argument type New argument type

(KGroupedStream|KGroupedTable).aggregate Aggregator<K, V, T> Aggregator<? super K, ? super V, T>

(KTable|KStream).filter*, KStream.branch Predicate<K, V> Predicate<? super K, ? super V>

(KStream|KTable).groupBy KeyValueMapper<K, V, T> KeyValueMapper<? super K, ? super V, T>

KStream.(selectKey|map|flatMap), KTable.
toStream

KeyValueMapper<K, V, X> KeyValueMapper<? super K, ? super V, ?
extends X>

(KStream|KTable).mapValues, KStream.
flatMapValues

ValueMapper<V, X> ValueMapper<? super V, ? extends X>

KStream.transform TransformerSupplier<K,
V, X>

TransformerSupplier<? super K, ? super
V, X>

KStream.transformValues ValueTransformerSupplier<
V, X>

ValueTransformerSupplier<? super V, X>

(KStream|Ktable).foreach ForeachAction<K, V> ForeachAction<? super K, ? super V>

KStream.process ProcessorSupplier<K, V> ProcessorSupplier<? super K, ? super V>

(KStream|KTable).*join ValueJoiner<K, V, R> ValueJoiner<? super K, ? super V, ?
extends R>

http://mail-archives.apache.org/mod_mbox/kafka-dev/201612.mbox/%3CCA%2BrPSbaKBy8WKPSc6ig4JPL%2BooX4WNm-aw62svps3hUJDLWmkA%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-4481

1.

2.

3.

(KStream|KTable).(to|through) StreamPartitioner<K, V> StreamPartitioner<? super K, ? super V>

KafkaStreams.metadataForKey StreamPartitioner<K, V> StreamPartitioner<? super K, ? super V>

Proposed Changes
This KIP proposes changing the methods on the interfaces listed above to relax function arguments parameterized in key, value, and return types to
accept super-types of those key and values, and sub-types of those return types.

For KGroupedStream/KGroupedTable and methods it was decided to leave the return type invariant, since the change is not as groupBy aggregate
straightforward. Those methods sometimes require passing a or where T needs to be consistent with the (for Serde<T> Initializer<T> Aggregator
aggregate) or (for groupBy) result type.KeyValueMapper

For backwards compatibility reasons, and to avoid runtime class cast exceptions, the choice was made to not make the result type covariant, even though
that would have been more correct (see).rejected alternatives

Compatibility, Deprecation, and Migration Plan
This change is binary compatible
This change is source compatible for anyone merely calling the existing APIs
This change is not source compatible for anyone extending the affected classes / interfaces.
Update (2017-01-18): This change is not source compatible for anyone calling the Kafka Streams API from Scala due to differences in how Scala
infers types.

Rejected Alternatives
For the aggregate and groupBy case the following alternatives would have been more correct – if we could drop support for Java 7 – since they would
enforce the same type for initializer, serializer, and serde.

public <VR, VAGG extends VR> KTable<K, VR> aggregate(
 final Initializer<VAGG> initializer,
 final Aggregator<? super K, ? super V, VAGG> aggregator,
 final Serde<VAGG> aggValueSerde
);

<KR, KG extends KR> KGroupedStream<KR, V> groupBy(
 final KeyValueMapper<? super K, ? super V, KG> selector,
 final Serde<KG> keySerde,
 final Serde<V> valSerde

);

Unfortunately, when compiling against 1.7 source target, passing Aggregator<X, X, String> has the compiler incorrectly infer the result type as being
KStream<T, Object>, whereas when compiling against 1.8 source target, the compiler correctly infers the result type as KStream<T, String>. It is still
possible to coerce the 1.7 compiler into inferring the correct type by introducing an intermediate variable of type KStream<T, String>, or by explicitly
casting to the correct type, however this makes it inconvenient to chain method calls. In addition, this would also break source compatibility for existing
code compiled against 1.7 target.

In light of that we were forced to either:

make no changes to the output type, i.e. keep the existing output type invariant, leaving the inconsistent API and do another API change once we
can drop support for 1.7
use the more correct <T, VAGG extends T> contraint, and break source compatibility for 1.7 targets, forcing those users to rely on ugly casts or
intermediate variables.
make the API consistent by making result types covariant using wildcards , relaxing compile time correctness across initializer, ? extends V
aggregator, and serde output types. We initially explored this route because if was backward compatible, but decided to drop it because it would
a) require non-trivial changes to the existing streams code, and b) introduce lots of unchecked casts that could blow up at runtime if a user is not
careful to ensure consistency across output types in aggregate / groupBy

We decided to chose approach 1. at the expense of a more consistent API, to ensure backwards compatibility for 1.7 users and avoid the complexity and
potential pitfalls of the last approach.

Once we drop support for 1.7 we can always decide to switch to approach 2. without breaking source compatibility, by making a proposal similar to this
KIP.

Notes

Update 2017-01-18: In light of it was decided to leave return types invariant for - KAFKA-4672 Getting issue details... STATUS TransformerSu

 and pplier ValueTransformerSupplier

https://issues.apache.org/jira/browse/KAFKA-4672

	KIP-100 - Relax Type constraints in Kafka Streams API

