Sling API Redesign

Redesign of the Sling API

Status: IMPLEMENTED

There have been a number of threads on the Sling Dev Mailing List on simplifying the current Component API and turn it into a new Sling API. This page
starts at the current state of the discussion as of Oct. 10, 2007, and tries to summarize what has been discussed and to resolve this into a modified
proposal.

[Redesign of the Sling API][References] [Current State] [Update Modified Content] [JCR based Operations] [Replace Content by Resource] [Exten
sions to the Resource interface] [Open Issues] [Resolving the Servlet]

References

SLING-28, Simplify the Sling (aka Component) API

SLING-47, microsling, "Sling reduced to the max"

Simplifying our component api - The original thread launched by Carsten

Move ContentManager to Sling API - My own proposal to make the ContentManager part of the Sling API

Breaking Sling into smaller pieces? - Bertrand's proposal to further modularize parts of Sling such as the current sling-core bundle

Current State

Currently, request processing is controlled by the sling-core bundle using two sets of filters: one set called at the time the client request enters Sling - so
called request level filters - and the other set called for each Content object processed during request processing - so called content level filters.

Amongst the request level filters is the Cont ent Resol ver Fi | t er which takes the request URL and finds a Cont ent object for the URL. This filter
implements the Cont ent Resol ver interface and is also registered as this service. So other parts of the system may use the same mechanism to resolve
paths to Cont ent objects. The Cont ent Resol ver also implements the default content loading described here.

Amongst the content level filters is the Component Resol ver Fi | t er which asks the Cont ent object for its component ID and resolves this ID using the
registered {{Component}}s. This filter also implements the default component resolution described here.

To manage content Sling provides two interfaces:
® Cont ent Manager - Basic interface allowing CRUD operations using Cont ent objects. This interface is completely agnostic of the actual
persistence used.
® Jcr Cont ent Manager - Extends the Cont ent Manager interface integrating with the Jackrabbit OCM Cbj ect Cont ent Manager interface. This

provides the API actually used by the Cont ent Resol ver Fi | t er to load Cont ent objects from the JCR repository according to the request
URL.

If components would want to create, update and delete content, they would access the Cont ent Manager by retrieving the or g. apache. sling.jcr.
cont ent _nmanager request attribute. If JCR tasks would have to be executed, that retrieved object would be cast to Jcr Cont ent Manager and the
session retrieved.

Examples:

Update Modified Cont ent

After having modified the content, a component might do the following to persisted the modified content:

Content content = conponent Request. get Content();
/1 nodify content

Cont ent Manager content Manager = (Cont ent Manager) conponent Request.getAttribute("org.apache.sling.jcr.
cont ent _nanager");

cont ent Manager . store(content);

cont ent Manager . save();

JCR based Operations

To operate on a JCR level or to directly access the JCR Node underlying the request Cont ent the following might be done:

http://issues.apache.org/jira/browse/SLING-28
http://issues.apache.org/jira/browse/SLING-47
http://www.mail-archive.com/sling-dev@incubator.apache.org/msg00177.html
http://www.mail-archive.com/sling-dev@incubator.apache.org/msg00267.html
http://www.mail-archive.com/sling-dev@incubator.apache.org/msg00288.html
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=13271153
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=13271153

/'l get the JCR content nanager
Jcr Cont ent Manager j cr Cont ent Manager = (Jcr Cont ent Manager) conponent Request. getAttri bute("org. apache.sling.jcr.
cont ent _manager");

/] get the session
Sessi on session = jcrContent Manager . get Sessi on();

/] access the node addressed by the request URL
String contentPath = conponent Request. get Content (). getPath();
Node cont ent Node = (Node) session. getlten{contentPath);

Arguably, this is tedious. So a first simplification proposal suggested to move the JCR agnostic Cont ent Manager interface to the Sling APl and to provide
a getter method on the Conponent Request interface. The returned object might also be cast to a Jcr Cont ent Manager to then access the repository.

This proposal sparked a series of reactions (see references above) and so based on Bertrands thoughts, we propose the following change.

Replace Cont ent by Resour ce

The "problem” of the current Component API is that is centered around a Cont ent interface which presumably is data provided to the component loaded
from the persistence (the JCR repository of course) actually hiding the repository. This also predefines how data is acquired and used, namely by using
Object Content Mapping.

Starting off this situation, we propose replacing the (fully loaded) Cont ent by a data representation we will call Resour ce:

public interface Resource {

/1 the original request URL |leading to the resource

/1 this is not necessairily the sane as Servl et Request. get Request URL as
/1 it may have been processed by some URL mapping and fol ding

String getOriginal URI();

/1 the path to the actual resource providing the data
/1 fromthe point of viewof Sling this is just a string
String getURI();

/1 the selectors of the request or enpty array if none
/1 the selectors are dot-separated strings after the part of
/1 original UR addressing the resource upto the extension

/'l Exanpl es:

/1l - /lalb/c has no selectors for resource /al/b/c

11 - /alb/c.htm has no selectors for resource /a/b/c

/1 - /alb/c.sl.s2.htm has selectors [s1, s2] for resource /a/b/c
/1 - lalb/c.s.htm/suffix has selector [s] for resource /a/b/c

String[] getSelectors();

/1 the extension of the request or enpty string if none

/1 the extension is a string after the last dot after the

/1l part of the original URl addressing the resource upto the
/1 end of the original URI or a slash

/1 Exanpl es:

/1 - /alb/c has no extension for resource /al/b/c

11 - /alb/c.htm has extension html for resource /al/b/c

/1 - /alb/c.sl.s2.htm has extension htm for resource /a/b/c
/1 - /alb/c.s.htm/suffix has extension html for resource /a/b/c

String get Extension();

/1 the suffix of the request or enpty string if none
/1 the suffix is the string after the next slash after the part
/1 of the original UR addressing the resource

/'l Exanpl es:

/1 - /alb/c has no suffix for resource /al/b/c

/1 - /alb/c.htm has no suffix for resource /a/b/c

11 - /alb/c.sl.s2.htm has no suffix for resource /a/b/c

/1 - /alb/c.s.htm/suffix has suffix suffix for resource /a/b/c

String getSuffix();

The Conponent Request interface would be modified as follows:

® The get Ext ensi on(), get Sel ector (int), getSel ectors(), getSelectorString() and get Suf fi x() methods are removed as this
information can now be obtained from the Resour ce directly.

®* The get Content (), getContent (String), get Children(Content) and get Request Di spat cher (Cont ent) methods are replaced as
follows:

public interface Conponent Request extends HttpServl et Request {

/1 Returns the Resource to which the get Request URL net hod maps
Resour ce get Resource();

/'l Returns a Resource to which the given URl String maps
/1 Inplicit: getResource().equal s(get Resource(get Request URL()))
Resour ce get Resource(String uri);

/1 Returns an Enuneration child Resources of the given Resource

/1 1f resource parameter is null, getResource() is used as parent
/1 (use Enumeration to stay in line with the HtpServl et Request)
Enumer at i on<Resour ce> get Chi | dren(Resource resource);

/1 Gets a RequestDispatcher to include the given resource
Request Di spat cher get Request Di spat cher (Resource resource);

Extensions to the Resour ce interface
The Resour ce interface may be extended depending on the way, the resource is acquired. For example, there might be a MappedCont ent Resour ce
which would return an object mapped from any persistence layer, a Jcr Resour ce may encapsulate a JCR based resource. A resolver loading content

from a JCR repository using Jackrabbit OCM might return a resource which implements both the MappedCont ent Resour ce and the Jcr Resour ce
interfaces.

MappedContentResource

public interface MappedCont ent Resource extends Resource {

/1 Returns the napped data object
Obj ect get Ovj ect();

JcrResource

public interface JcrResource extends Resource {

/] Returns the JCR session used to acquire the Node

/1 (this is actually conveni ence as getNode().get Session()
/] must return the sanme session)

Sessi on get Session();

/1 Returns the JCR Node addressed by the Resource URI

/1 this is the same as getSession().getlten(getURI());
Node get Node();

The existing ContentResolver will be retargeted to the Resour ce interface and return an object implementing the MappedCont ent Resour ce and the Jcr
Resour ce interfaces if a mapping exists. Otherwise an object just implementing the Jcr Resour ce interface is returned providing just the resolved node.

Open Issues

This above definition leaves a series of issues open.

Resolving the Servlet

@ The Conponent interface is removed and the Ser vl et interface is used.

Currently the Cont ent interface defines a method get Conponent | d() which returns the identifier of a Conponent to which processing of the request is
dispatched. With the new Resour ce interface, no such method exists any more.

The intent is, that Ser vl et resolver would know about the concrete implementations of the Resour ce interface and could handle the respective
resources. For example the Sling standard servlet resolver could try the following:

1. If the Resour ce is a Jcr Resour ce check the sl i ng: ser vl et | d property of the resource node. If such a property exists and denotes a

registered Ser vl et service, that servlet is used.
2. Otherwise, if the Resour ce is a MappedCont ent Resour ce, find a Ser vl et service willing to handle requests for the actual object class of the

mapped object. The Ser vl et service could be registered with a service property listing the names of the mapped object classes supported.
3. Otherwise try to find a registered Ser vl et interface willing to handle the request using the resource path, selectors and/or extensions.

Alternatively, the Resour ce interface might have a get Ser vl et | d() method providing the identifier of the servlet to use. It might well be that the first
solution is the better one.

	Sling API Redesign

