
Application Server Specific Configuration Guide
This document provides app server-specific configuration information for running Apache CXF.

JBoss Application Server
SpringBoot
WebLogic

Put jars in endorsed folder
Pack war in an ear, deploy the ear with weblogic-application.xml

Websphere
For WebSphere Versions < 6.1.0.29

No Web Services Feature Pack for WebSphere installed
put jar in the endorsed folder
Add your own class loader

Web Services Feature Pack for WebSphere Installed
For WebSphere 6.1.0.29+, V7 and V8

Glassfish
OC4J

Disclaimer
Background

Configuration overview
Oracle OC4J class loading
Needed components
Preparing stax-api
Replace the Oracle XML parser with Xerces
Get rid of OC4J JAX-WS libraries
swapping Oracle wsdl.jar with wsdl4j.jar and jaxb.jar API with jaxb-api-2.0.jar
Deploying applications
Oracle FAQ

I'm getting java.lang.ClassCastException: org.apache.xerces.jaxp.DocumentBuilderFactoryImpl
I cannot get WSDL (getting HTTP 500 accesing my CXF service WSDL with http://myshot/myservice?wsdl)
I'm getting java.lang.NoSuchMethodException: oracle.j2ee.ws.wsdl.extensions.soap.SOAPBodyImpl.getElementType()
I cannot get it to work still

Integration with Application Server FAQ
Resources

JBoss Application Server

JBoss Application Server (JBoss AS) comes with its own webservices stack (JBossWS) in order for providing full JavaEE support.
Starting from JBoss AS 6 M4, the default webservices stack is internally based on Apache CXF; as a consequence users might experiment classloading
issues with classes from both the CXF libraries and its dependencies if included in deployments and not properly isolated. Please refer to the relevant
JBoss AS documentation for details on how to turn on classloading isolation on the application server version in use.

In particular, when willing to run Apache CXF based applications on top of JBoss AS 7 series, users have basically two options:

use JBoss AS as if it was a servlet container with no WS functionalities: this basically implies disabling the webservices subsystem for the user
deployment, hence preventing the AS webservices stack from processing the ws endpoint deployment and letting the CXF libs included in the
archive deal with any WS invocations when CXFServlet is hit; the webservices subsystem is turned off by adding a jboss-deployment-structure.
xml as follows to the ws endpoint deployment:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <deployment>
 <exclude-subsystems>
 <subsystem name="webservices" />
 </exclude-subsystems>
 </deployment>
</jboss-deployment-structure>

this approach offers the fastest route to deploying CXF apps on JBoss AS; the drawback is that no special ws integration with JBoss AS internals
is available

rely on JBossWS integration and the Apache CXF libraries included in the application server (): this implies removing any Apache documentation
CXF libs from the ws deployment as well as any other dependencies which is already included in JBoss AS (including any Java EE API jar); if
included, the optional web.xml descriptor is to be rewritten according to JBossWS convention (see); the Spring support is optional documentation
in JBoss AS and Spring based endpoint declaration is not the default/preferred configuration approach for ws endpoints, hence users willing to
declare endpoints using Spring needs to create a org.springframework.spring module and put their endpoint declarations in a jbossws-cxf.xml
descriptor; if the user application makes use of any lib besides tha JavaEE api, proper module are to be declared either using the dependencies
jboss-deployment-structure.xml descriptor or the archive MANIFEST.MF (few directions on ws modules available)here

The second approach allows leveraging the full JavaEE 6 stack (including e.g. JSR-109) as well as specific ws integration with JBoss AS internals.

SpringBoot

https://docs.jboss.org/author/display/AS71/Webservices%20reference%20guide.html
https://docs.jboss.org/author/display/AS71/JAX-WS%20User%20Guide.html
https://docs.jboss.org/author/display/AS71/Class%20Loading%20in%20AS7.html
https://docs.jboss.org/author/display/AS71/JBoss%20Modules%20and%20WS%20applications.html

Please see CXF documentation.SpringBoot

JAX-WS: see demo.JAX-WS Spring Boot

JAX-RS: see and demos.JAX-RS Spring Boot JAX-RS Spring Boot Scan

WebLogic

There are two ways to deploy a CXF WAR archive in WebLogic. ()Note: This has been validated on WebLogic9.2.

Put jars in endorsed folder

Put the geronimo-ws-metadata_2.0_spec-1.1.1.jar in the $Weblogic_Home/jdk_../jre/lib/endorsed folder.
Deploy the CXF war in weblogic.
(This way is not recommended, since it might break the application server itself. The method below is preferred, as it impacts a single module
only.)

Pack war in an ear, deploy the ear with weblogic-application.xml

Create a standard J2EE application.xml file in the META-INF folder. (Take $CXF_HOME/samples/java_first_spring_support for example)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC
 "-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN"
 "http://java.sun.com/dtd/application_1_3.dtd">
<application>
 <display-name>spring_http</display-name>
 <module>
 <web>
 <web-uri>spring_http.war</web-uri>
 <context-root>spring</context-root>
 </web>
 </module>
</application>

Create a weblogic-application.xml (Weblogic specific) in the META-INF folder.

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-application xmlns="http://www.bea.com/ns/weblogic/90">
 <application-param>
 <param-name>webapp.encoding.default</param-name>
 <param-value>UTF-8</param-value>
 </application-param>
 <prefer-application-packages>
 <package-name>javax.jws.*</package-name>
 </prefer-application-packages>
</weblogic-application>

The prefer-application-packages element you see above sets up WebLogic's . Each class whose package matches one of the Filtering Classloader
package-name elements listed will be searched for first within the EAR before relying on the WebLogic system classloader's version. If a package for a
particular class is not listed here, WebLogic will try to load its own (possibly older) version first, so if you are getting deployment errors due to any particular
class you might wish to add its package here.

Also note you can, and may need to, specify other options in the weblogic-application.xml file such as XML processing factories as shown . See the here
WebLogic for more information.guide

Run "jar cvf ..." command to create the ear and then deploy it. Alternatively, this provides a Mavenized method of building the EAR.blog entry

Websphere

For WebSphere Versions < 6.1.0.29

Adding jars to the 'endorsed' folder appears to be the main solution:

No Web Services Feature Pack for WebSphere installed

put jar in the endorsed folder

https://cwiki.apache.org/confluence/display/CXF20DOC/SpringBoot
https://github.com/apache/cxf/tree/master/distribution/src/main/release/samples/jaxws_spring_boot
https://github.com/apache/cxf/tree/master/distribution/src/main/release/samples/jax_rs/spring_boot
https://github.com/apache/cxf/tree/master/distribution/src/main/release/samples/jax_rs/spring_boot_scan
http://e-docs.bea.com/wls/docs100/programming/classloading.html#wp1097187
http://cxf.547215.n5.nabble.com/Getting-error-while-deploying-on-weblogic-9-2-but-able-to-do-in-tomcat-td554060.html#a554061
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/programming/app_xml.html#wp1064995
http://www.jroller.com/gmazza/entry/deploying_webservices_on_weblogic

1.
2.
3.
4.
5.
6.
7.

put the wsdl4j-1.6.1.jar in the $WebSphere_HOME/java/jre/lib/endorsed folder.
In the WebSphere console, find the specific enterprise application, click the "Class loading and update detection".

Mark the "Classes loaded with application class loader first" selected.
Mark the "Class loader for each war file in application" selected.

And then restart the Websphere server. (Because we changed the endorsed folder, we need to restart it to make it take effect).

Add your own class loader

If you put your wsdl4j-1.6.1 jar in $WAS_HOME/java/jre/lib/endorsed, all your applications will depend on your version of wsdl4j. Another solution is to
create a new class loader in your server which loads before parent class loader, create a shared library with your version of wsdl4j, and add this shared
library to your new class loader. This version of wsdl4j will only be available for your specific server and not affect applications running in other servers.

Step by step

In the WAS console navigate to Environment > Shared Libraries
Select the scope you wish your library should be visible in
Click and set values ex: and New name=MYAPP_SHARED_LIB, classpath=PATH_TO/wsdl4j-1.6.2.jar Save
Navigate to Application servers > [your server name] > Java and Process Management > Class loader > New
Select and Classes loaded with application class loader first Save
Select your new class loader and click Shared library references
Add your shared library (MYAPP_SHARED_LIB) and restart your server.Save

Tested in WAS 6.1 only but should work in earlier versions as well.

Another user running WS6.1 FP 23 without the web services feature pack came up with this solution that seemed to work for them:

Create a shared library with the following jars:
jsr173_api-1.0.jar
jaxp-ri-1.4.2.jar
saaj-impl-1.3.2.jar
wsdl4j-1.6.2.jar

Create a new parent-first classloader and have it reference the shared library you just created. Restart everything and it should work.

Web Services Feature Pack for WebSphere Installed

Things are way more complicated if the Web Services Feature Pack for WebSphere is installed. With this feature pack installed, it is impossible to deploy
an application using CXF, because the WebSphere Web Services engine starts parsing the JAX-WS annotations of the services and tries to deploy the
services.

Up to fixpack 27 (6.1.0.27) there was no possibility to disable the WebSphere Web Services engine.

For WebSphere 6.1.0.29+, V7 and V8

Follow the PDF download given within this IBM developerWorks article:http://www.ibm.com/developerworks/websphere/library/techarticles/1001_thaker
/1001_thaker.html

As described in the PDF, you'll need to change the Classloader order to "Classes loaded with local class loader first (parent last)" and to disable the IBM
web services engine, either for the JVM as a whole or for the particular module.

To disable for the whole JVM, set the JVM property

com.ibm.websphere.webservices.DisableIBMJAXWSEngine=true

or to disable the engine just for a specific module by adding

DisableIBMJAXWSEngine: true

to WAR/META-INF/MANIFEST.MF.

Another issue that comes up with certain versions of WebSphere is an incompatibility with the SAAJ implementation. It is recommended to use the org.
apache.servicemix.bundles.saaj-impl-1.3.18_1.jar saaj impl available from http://repo1.maven.org/maven2/org/apache/servicemix/bundles/org.apache.

 as that contains a recent version of SAAJ along with it's required DOM implementation which will work on the IBM servicemix.bundles.saaj-impl/1.3.18_1/
JDK.

One user has reported that he was able to get CXF working on WebSphere with a minimal set of CXF jars by following the above
procedures and using the list of jars:

Please make sure your classpath doesn't have the servlet-2.5 library, since WebSphere6.1 is servlet-2.4 compliant!

http://www.ibm.com/developerworks/websphere/library/techarticles/1001_thaker/1001_thaker.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1001_thaker/1001_thaker.html
http://repo1.maven.org/maven2/org/apache/servicemix/bundles/org.apache.servicemix.bundles.saaj-impl/1.3.18_1/
http://repo1.maven.org/maven2/org/apache/servicemix/bundles/org.apache.servicemix.bundles.saaj-impl/1.3.18_1/

FastInfoset-1.2.9.jar
aopalliance-1.0.jar
commons-logging-1.1.1.jar
cxf-2.5.2.jar
geronimo-activation_1.1_spec-1.1.jar
geronimo-annotation_1.0_spec-1.1.1.jar
geronimo-javamail_1.4_spec-1.7.1.jar
geronimo-jaxws_2.2_spec-1.1.jar
geronimo-stax-api_1.0_spec-1.0.1.jar
geronimo-ws-metadata_2.0_spec-1.1.3.jar
jars_in_war.txt
jaxb-api-2.2.3.jar
jaxb-impl-2.2.4-1.jar
neethi-3.0.1.jar
org.apache.servicemix.bundles.saaj-impl-1.3.18_1.jar
spring-aop-3.0.6.RELEASE.jar
spring-asm-3.0.6.RELEASE.jar
spring-beans-3.0.6.RELEASE.jar
spring-context-3.0.6.RELEASE.jar
spring-core-3.0.6.RELEASE.jar
spring-expression-3.0.6.RELEASE.jar
spring-web-3.0.6.RELEASE.jar
stax2-api-3.1.1.jar
woodstox-core-asl-4.1.1.jar
wsdl4j-1.6.2.jar
xmlschema-core-2.0.1.jar

Glassfish

CXF Interceptors will not work in Glassfish without this sun-web.xml file to configure the classloader. By default, Glassfish will use Metro for JAX-WS
services so the classloader needs to be configured to allow CXF libraries to provide JAX-WS services. The following sun-web.xml xml source was added
to /WEB-INF to resolve this issue:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC '-//Sun Microsystems, Inc.//DTD
Application Server 9.0 Servlet 2.5//EN'
'http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd'>
<sun-web-app>
<class-loader delegate="false"/>
</sun-web-app>

OC4J

Disclaimer

This guide covers only 10.1.3.X.X version of OC4J. Note that OC4J 10.1.2 is not JSE 1.5 certified server. OC4J 11_g_ is and fully JEE 5.0 certified stack
comes with their own JAX-WS implementation.

Background

Oracle OC4J comes with highly customized XML stack by Oracle including SAX, StAX, JAXP, JAX-WS, SAAJ, WSDL and few others. All of those
frameworks are Oracle proprietary implementations in the OC4J distribution. This gives Oracle really good interoperability between their products but it
makes it rather hard to introduce something which needs different implementation of above APIs (like CXF).

This guide requires heavy customization of the OC4J configuration. Bear in mind that some of steps presented below are either undocumented
or unsupported. We strongly advice you to perform those steps in a separate container, dedicated exclusively for CXF.

Also see: for other suggestions on how to configure OC4J.http://chadthedeveloper.blogspot.com/2008/06/cxf-vs-oc4j-round-1.html

http://java.sun.com/javaee/overview/compatibility.jsp
http://chadthedeveloper.blogspot.com/2008/06/cxf-vs-oc4j-round-1.html

1.
2.
3.

Configuration overview

A few components need to be customized in OC4J to allow CFX integration:

Xerces
JAX-WS 2.0 APIs
WSDL4J

Unfortunately, these components have to be configured in different parts of OC4J.

Oracle OC4J class loading

A key part of successfully integrating CXF into OC4J is to understand how class loaders work in OC4J. When starting OC4J there are generally three
stages where customization could occur:

Virtual Machine boot
OC4J boot
CXF (application) boot

Customizing in the last step is - basically OC4J has quite powerful class loader and an easy customization console. Unfortunately quite easy to achieve
there are some components that could not be configured this way. They are configured during OC4J boot. Unfortunately one of this is OC4J webservices
stack (located in).$ORACLE_HOME/webservices/lib

Needed components

Before start please download and Apache CXF 2.0.6 or better Xerces 2.8.1

Preparing stax-api

If you use a version of CXF that includes stax-api.jar that in turn include the QName class, remove from the stax-api javax.xml.namespace.QName
shipped with CXF. Oracle apparently has it already in .$ORACLE_HOME/j2ee/home/lib/jax-qname-namespace.jar

Replace the Oracle XML parser with Xerces

The basic idea behind how to do this is described in detail here

Create OC4J shared library named and fill it with:cxf.foundation

xercesImpl.jar (from Xerces distribution)
xml-apis-1.2.02.jar (from CXF-distribution)
xalan-2.7.0.jar (ditto)
geronimo-ws-metadata_2.0_spec-1.1.1.jar (ditto)

Get rid of OC4J JAX-WS libraries

OC4J has , unfortunately this means that during OC4J boot it loads JAX-WS APIs and implementation by Oracle. preliminary support for JAX-WS outdated
This occurs even before shared libraries comes into action, at a very early stage of OC4J boot. Boot-time OC4J libraries are configured in file in boot.xml

 bootstrap jar. To get rid of this:$ORACLE_HOME/j2ee/home/oc4j.jar

unpack fileoc4j.jar
locate file and edit itMETA-INF/boot.xml
find section

<!-- WS jax-rpc -->
 <code-source path="${oracle.home}/webservices/lib/jaxr-api.jar"/>
 <code-source path="${oracle.home}/webservices/lib/jaxrpc-api.jar"/>
 <code-source path="${oracle.home}/webservices/lib/jaxb-api.jar"/>
 <code-source path="${oracle.home}/webservices/lib/saaj-api.jar"/>
 <code-source path="${oracle.home}/webservices/lib/jws-api.jar" if="java.specification.version == /1\.[5-
6]/"/>

and comment out line which include entry, like belowjws-api.jar

OC4J 10.1.3 comes with but this implementation is somewhat limited only to top-down preliminary implementation of JAX-WS (JSR-181)
scenario, with very limited customization (lack of JAXB 2.0 etc.).

When building Your application again.DO NOT INCLUDE THOSE COMPONENTS

http://xerces.apache.org/xerces2-j/
http://sourceforge.net/projects/wsdl4j
http://download-uk.oracle.com/docs/cd/B25221_03/web.1013/b14433/classload.htm
http://cxf.apache.org/download.html
http://archive.apache.org/dist/xml/xerces-j/
http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/how-to-swapxmlparser/doc/readme.html
http://www.oracle.com/technology/tech/java/oc4j/10131/OracleAS-NF-10131.pdf

<!-- <code-source path="${oracle.home}/webservices/lib/jws-api.jar" if="java.specification.version == /1\.[5-6]
/"/> -->

repackage (don't forget about - use)oc4j.jar MANIFEST.MF jar -m META-INF/MANIFEST.MF

swapping Oracle with and API with wsdl.jar wsdl4j.jar jaxb.jar jaxb-api-2.0.jar

Additionally Oracle provides it's own implementation of WSDL functionality which conflicts with . To get rid of this add wsdl4j.jar -Xbootclasspath
 option to JVM parametrs (either in command line running /p:"<path to wsdlj>/wsdl4j-1.6.1.jar;<path to jaxb2>/jaxb-api-2.0.jar"

OC4J standalone or in OPMN).

Deploying applications

When deploying please follow those steps:

Edit deployment plan
Edit in the deployment plan like described Configure class loading here
Uncheck libraryoracle.xml
Check librarycxf.foundation
Uncheck Search Local Classes First
do not include , , and in - those will be automatically xercesImpl xml-apis xalan geronimo-ws-metadata_2.0_spec-1.1.1.jar war
loaded by by OC4J Shared Libraries class loader.

Oracle FAQ

I'm getting java.lang.ClassCastException: org.apache.xerces.jaxp.DocumentBuilderFactoryImpl

This primarily happens when:

xerces is loaded twice - by shared library class loader and application class loader
or when there is mismatch between and implementation of SAX APIxerces oracle

Please be sure You properly installed and enabled for Your application shared library as described . If Yes please be sure that You cxf.foundation here
didn't include xercesImpl.jar in Your . If You still have problems please - be sure that war see how You can debug JAXP problems org.apache.xerces.

 are instantiated from within and not .jaxp.DocumentBuilderFactoryImpl JAXP oracle.xml.parser.v2.DocumentBuilder

I cannot get WSDL (getting HTTP 500 accesing my CXF service WSDL with)http://myshot/myservice?wsdl

Please be sure that is loaded before as described wsdl4j.jar wsdl.jar here

I'm getting java.lang.NoSuchMethodException: oracle.j2ee.ws.wsdl.extensions.soap.SOAPBodyImpl.
getElementType()

See this

I cannot get it to work still

Try something simple. Download OC4J standalone and bootstrap it from command line directly: . Enable java [options] -jar oc4j.jar SAX
. Be sure You don't include douplicated jars in Your application like debugging xercesImpl, xalan, xml-apis and geronimo-ws-metadata_2.

. Review steps above once more. It works .0_spec-1.1.1.jar

Integration with Application Server FAQ

1.
Q: I have this error: javax.xml.ws.WebServiceException: Cannot create SAAJ factory instance.
A: Please make sure you have the saaj-impl-1.3.jar in the classpath and make sure your app picks up this one instead of weblogic one.

Resources

You can automate above steps by packaging You into archive (even though) if it's only and providing war ear war orion-
 proprietary descriptor as described . You could also provide proprietary in Your application.xml here orion-web.xml war

instrumenting attribute described above. This step is described .Search Local Classes First here

http://www.oracle.com/technology/tech/java/oc4j/1013/how_to/how-to-swapxmlparser/doc/readme.html
http://java.sun.com/javase/6/docs/api/javax/xml/parsers/SAXParserFactory.html#newInstance()
http://myshot/myservice?wsdl
http://java.sun.com/javase/6/docs/api/javax/xml/parsers/SAXParserFactory.html#newInstance()
http://java.sun.com/javase/6/docs/api/javax/xml/parsers/SAXParserFactory.html#newInstance()
http://download-west.oracle.com/docs/cd/B32110_01/web.1013/b28952/classload.htm#CIHIHDEG
http://www.oracle.com/technology/tech/java/oc4j/htdocs/how-to-servlet-sysclassloader.html

Utilizing the OC4J Class Loading Framework
Deploy XFire in WebLogic
Understanding WebLogic ClassLoader
JBoss Class Configuration
Troubleshooting SAX

http://download-uk.oracle.com/docs/cd/B25221_03/web.1013/b14433/classload.htm
http://xfire.codehaus.org/XFire+on+WebLogic+9.2
http://edocs.bea.com/wls/docs92/programming/classloading.html
http://www.jboss.org/wiki/Wiki.jsp?page=ClassLoadingConfiguration
http://java.sun.com/javase/6/docs/api/javax/xml/parsers/SAXParserFactory.html#newInstance()

	Application Server Specific Configuration Guide

