KIP 130: Expose states of active tasks to KafkaStreams
public API

Status

Motivation

Public Interfaces

Proposed Changes

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status

Current state: Accepted
Discussion thread: here
JIRA: here

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation

In Kafka 0.10.1.0, toString() methods have been added to the public API of the KafkaStreams class to print useful information about the representation of
the topology DAG.

If this method can be used to debug topologies during development we cannot used it to monitor a KafkaStreams application in an production environment.

Currently there is no way to have the details about the states of either active or standby tasks, neither its partition assignments.

To improve Streams' debuggability we propose to expose the states of tasks throught the public API KafkaStreams.

The most close API to this is StreamsMetadata, however it aggregates the tasks across all threads and only present the aggregated set of the assigned
partitions.

This KIP add a new method to allow access to runtime information (i.e threads/tasks details of the local stream instance).

Also, exposing both active and standby tasks is important as this can be used to debug partition assigments when num.standby.replicas != 0.

The task-level information could be polled in a programmatic way for monitoring purposes.

For instance, this will allow applications to expose a REST API to get the global state of a kstreams topology. In addition, this could encourage the
community to develop some KafkaStreams Ul tooling.

Public Interfaces

This KIP will add the method Set<ThreadMetadata> KafkaStreams#localThreadsMetadata(). This method will return a set ThreadMetadata representing
the current threads running into the local stream instance.

Below are the new public classes. Those classes will be declared as inner classes into KafkaStreams :

ThreadState

https://www.mail-archive.com/dev@kafka.apache.org/msg69849.html
https://issues.apache.org/jira/browse/KAFKA-4819

/**

* Represents the state of a thread-thread running within a {@ink KafkaStreans} application.
*/

public class ThreadMetadata {

private final String threadNane;
private final String threadState;
private final Set<TaskMetadata> activeTasks;
private final Set<TaskMetadata> standbyTasks;
public ThreadMetadata(String threadName, String threadState, Set<TaskMetadata> activeTasks,
Set <TaskMet adat a> st andbyTasks) {
this.threadNane = t hreadNaneg;
this.threadState t hreadSt at e;

this.activeTasks = activeTasks;
t hi s. standbyTasks = standbyTasks;

}

public String threadState() {
return threadState;

}

public String threadNane() {
return threadNane;

}

public Set <TaskMet adat a> activeTasks() {
return activeTasks;

}

public Set <TaskMet adat a> standbyTasks() {
return standbyTasks;

}

@verride

publ i c bool ean equal s(Object 0) {
if (this == 0) return true;
if (o ==null || getCass() !'= o.getC ass()) return false;
ThreadMet adata that = (ThreadMet adata) o;
if (!threadNane. equal s(that.threadNane)) return fal se;
if (!threadState.equal s(that.threadState)) return fal se;
if (lactiveTasks. equal s(that.activeTasks)) return false;
return standbyTasks. equal s(that. st andbyTasks);

}

@verride

public int hashCode() {
int result = threadNane. hashCode();
result = 31 * result + threadState. hashCode();
result = 31 * result + activeTasks. hashCode();
result = 31 * result + standbyTasks. hashCode();
return result;

}

@verride
public String toString() {
return "ThreadMet adat a{" +
"t hreadName=" + threadName +
", threadState=" + threadState +
", activeTasks=" + activeTasks +
", standbyTasks=" + standbyTasks +

e

TaskState

/**

* Represents the state of a single (task) running within a {@ink KafkaStreans} application.
*/

public class TaskMetadata {

private final String taskld,
private final Set<TopicPartition> assignedPartitions;

public TaskMetadata(String taskld, Set<TopicPartition> assignedPartitions) {
this.taskld = taskld;
this.assignedPartitions = assignedPartitions;

}

public String taskld() {
return taskld;

}

public Set<TopicPartition> assignedPartitions() {
return assignedPartitions;

}
@verride
public bool ean equal s(Object o) {
if (this == 0) return true;
if (o ==null || getCass() != o.getCl ass()) return false;
TaskMet adata that = (TaskMetadata) o;
if (!taskld.equals(that.taskld)) return false;
return assignedPartitions.equal s(that.assignedPartitions);
}
@verride

public int hashCode() ({
int result = taskld. hashCode();
result = 31 * result + assignedPartitions.hashCode();
return result;

}

@verride
public String toString() {
return "TaskMetadata{" +
"taskld=" + taskld +
", assignedPartitions=

e

+ assignedPartitions +

Proposed Changes

This new feature require to add a new method to KafkaStreams to expose thread/tasks details.

| **

* Returns information about the local streamthreads running in a {@ink KafkaStreans} application.
*

* @eturn the set of {@ink ThreadMetadata}.
*/
public Set<ThreadMet adat a> | ocal ThreadsMet adat a() {
val i dat el sRunni ng();
Set <Thr eadMet adat a> t hr eadMet adat a = new HashSet <>();
for (int i =0; i < threads.length; i++)
t hr eadMet adat a. add(t hreads[i].threadMetadata());
return threadMet adat a;

In addition, the current toString() method should be deprecated as it would result to return inconsistent information with the new API.

A straightforward first pass is GitHub PR 2612

Compatibility, Deprecation, and Migration Plan

No compatibility issues foreseen.

Rejected Alternatives

1. Add a new method threadStates to public API of StreamsMetadata to expose current states of running threads and tasks. This alternative was rejected
because the method would return null for remote application.

https://github.com/apache/kafka/pull/2612

	KIP 130: Expose states of active tasks to KafkaStreams public API

