
Aerospike Datastore Implementation

Project Implement Aerospike Datastore

Product Apache Gora

Name Nishadi Kirielle

Universit
y

University of Moratuwa, Sri Lanka

Email ndimeshi.12@cse.mrt.ac.lk

Github https://github.com/nishadi

LinkedIn https://www.linkedin.com/in/nishadikirielle

About Me

I am a Computer Science and Engineering undergraduate from University of Moratuwa, Sri Lanka. Currently I am in the final phase of my final year
research project which is to improve query performance of in-memory databases using bitmaps. My interested areas involve Cloud Computing, In-memory
Databases, NoSQL and Big data. In addition, I have an in-depth knowledge in Java, Maven and Git.

Open source contributions

WSO2 App Cloud

My contribution for WSO2 App Cloud product involves creating custom application, researching on a solution for the Kubernetes session affinity
problem, configuring a load balancer for App Cloud and enabling HTTPS support in App Cloud Kubernetes cluster.

WSO2 PPaaS

This project contribution was to create an artifact migration tool to migrate artifacts of WSO2 PPaaS 4.0.0 to WSO2 PPaaS 4.1.x.

Other:

Bit-Oriented Analytics Platform

I have engaged in this project as my final year project to develop and evaluate a cluster-based, bit-oriented analytics platform (storage engine)
designed to manage large, fast-growing volumes of data and provide fast query performance when used for OLAP and other query-intensive
applications. In this project I have developed an extension to Apache spark SQL to incorporate bitmap compression for data manipulations.

Background

Apache Gora is an in-memory data model that facilitates object to datastore mappings providing a data representation and persistence framework for big
data. As it currently supports for persisting objects to various database models such as column stores like Apache Hbase, Apache Cassandra and key
value stores, this project aims to extend its capability to provide support for Aerospike database.

Aerospike [1] is a key value store having a distributed NoSQL database. The key value store operations associate with records (RDBMS rows),
namespaces (RDBMS databases), sets (RDBMS tables) and bins (RDBMS columns). Each record contains a unique key and one or more bins containing
the values. The data model used in Aerospike is schemaless [2].

Proposed Solution

The expected approach is to start with designing and implementing datastore. As per the modular architecture in Apache Gora code base, the newly
implementing module to support for the Aerospike datastore will be added as a new module named with gora-aerospike.

mailto:ndimeshi.12@cse.mrt.ac.lk
https://github.com/nishadi
https://www.linkedin.com/in/nishadikirielle

1.

In order to interact with Aerospike server, Aerospike has provided the support for clients in several languages. Aerospike Java client can be used for the
purpose of interacting with the server in implementing the Gora Aerospike datastore module.

blocked URL

Configuration

In configuring Gora to use the Aerospike client, the basic configuration needs to be updated to use the Aerospike backend via the properties file. In
addition, the Aerospike server specific IP addresses and ports need to be provided via the properties files.

gora.datastore.default=org.apache.gora.aerospike.store.AerospikeStore

#Aerospike dataStore properties

gora.aerospikestore.server.ip=localhost

gora.aerospikestore.server.port=3000

Implementation

In the implementation of the new module, the basic consideration is on the datastore class, which is named AerospikeStore in this module. It is extended
from the DataStoreBase class and with this base class, all of the basic functionality needed to implement for the new data store are implemented.

public class AerospikeStore<K,T extends PersistentBase> extends DataStoreBase<K,T> {

}

Initializing the connection with Aerospike server

Initializing the connection, an Aerospike client needs to be created specifying the IP address and port of one or more seed nodes in the cluster.
If the user specifies a single seed node, the client first connects to the specified seed node and then discovers the rest of the cluster. If the user
specifies multiple seed nodes, then the client iterated through the array of seed nodes until it successfully gets connected to one of the seed
nodes and then discovers the cluster. Further, in the scenarios where the user connects an Aerospike enterprise servers which may require
user authentication, the user has the ability to provide user authentication details. [3] All of these initial details can be provided though the
properties file.

 2. Reading, writing and deleting data records from the Aerospike server

 Reading, writing and deleting data records from the server can be achieved via overriding the corresponding methods in the data store base. In
Aerospike client, to write records there are several options including writing with a policy, writing a single record and writing multiple records [4].
To delete a value of a given key, setting the corresponding bin(column) value to NULL is the provided approach by Aerospike server. In reading,
Aerospike provides ways to read all bins or specified bins from the server. So that it can be implemented via Gora module.

 3. Executing queries with Aerospike backend

https://lh4.googleusercontent.com/Lua-FG0wXQFF4tta9VvSmxPU7pHW8wp6cqxYg7f-Ve-gUSAyG8gA48TUN1f7ep6avGpF9vPRX6kHaVz4XlIoYEynzIBpXJasq2oBUbiWNOXFtkNjOA33muiU64u8OjXgjKoluSeN

1.
a.
b.
c.
d.

2.
3.

 As per in reading, writing and deleting, for querying as well, the corresponding methods in the data store base can be overridden. Then in order
to query the Aerospike server, the java client can be used as it has facilitated the query defining and executing. To execute the queries
Aerospike clients query API can be invoked.

 4. Terminating the connection with Aerospike server

 For the termination of the connection to the server, the same approach can be used that is used in initializing the connection.

As per the final step of the Gora Aerospike datastore module, usage guide will be documented on how to use the new module.

Results for Apache Community

With the completion of this project, the Apache community gets access to use Aerospike database backend with Apache Gora product.

Deliverables

A new maven module to provide support for Aerospike backend including following basic functionalities and test cases.
Initializing the connection with Aerospike server
Writing and deleting data from the Aerospike server
Executing queries with Aerospike backend
Terminating the connection with Aerospike server

Documentation for the the usage and functionality of the module
An additional sample for gora-tutorial module to understand the usage of the datastore depending on the requirement.

Scheduling

Activity Start Time End Time

 Community Bonding Period : Learn the organization, community, guidelines and best practices. Finalize requirements. 04-05-2017 29-05-
2017

Design the gora-aerospike-mapping.xml 30-05-2017 06-06-2016

Improve the implementation of put method in the prototype, implement get, delete methods. Write test cases for the implemented
functionality

 07-06-2017 18-06-
2016

Discuss the completed functionality of the current implementation and the progress with mentor to get feedbacks and suggestions 19-06-2017 25-06-
2017

Midterm Evaluations 26-06-2017 30-06-
2017

Implement query execution functionality 01-07-2017 12-07-2017

Complete the gora-aerospike module and test the functionality 13-07-2017 20-07-
2017

Documenting the usage of gora-aerospike module and extended time period for any project risks. 21-07-2017 28-07-2017

Final Evaluations 29-07-2017 29-08-2017

Community Engagement

In familiarizing with the project and the community, I have communicated via the Apache Gora dev-mailing list and Apache Gora JIRA to discuss the
details regarding the project idea. Further I have developed a prototype of the gora-aerospike module which has the ability to connect with Aerospike
server and put data records into it.

https://github.com/nishadi/gora/blob/gora-aerospike/gora-aerospike/src/main/java/org/apache/gora/aerospike/store/AerospikeStore.java

https://github.com/nishadi/gora/blob/gora-aerospike/gora-aerospike/src/main/java/org/apache/gora/aerospike/store/AerospikeStore.java

References

[1]."Aerospike High Performance NoSQL Database", Aerospike, 2017. [Online]. Available: . [Accessed: 29- Mar- 2017].http://www.aerospike.com/

[2]. "Data Model Aerospike", Aerospike.com, 2017. [Online]. Available: . [Accessed: 29- Mar- http://www.aerospike.com/docs/architecture/data-model.html
2017].

[3]. "Connecting Aerospike", Aerospike.com, 2017. [Online]. Available: . [Accessed: 29- Mar- http://www.aerospike.com/docs/client/java/usage/connect
2017].

[4]. "Key Value Store Aerospike", Aerospike.com, 2017. [Online]. Available: . [Accessed: http://www.aerospike.com/docs/client/java/usage/kvs/write.html
29- Mar- 2017].

http://www.aerospike.com/
http://Aerospike.com
http://www.aerospike.com/docs/architecture/data-model.html
http://Aerospike.com
http://www.aerospike.com/docs/client/java/usage/connect
http://Aerospike.com
http://www.aerospike.com/docs/client/java/usage/kvs/write.html

	Aerospike Datastore Implementation

