MINA v2.0 Quick Start Guide

Introduction

This tutorial will walk you through the process of building a MINA based program. This tutorial will walk through building a time server. The following
prerequisites are required for this tutorial:

® MINA 2.x Core
® JDK 1.5 or greater
® SLF4J 1.3.0 or greater
© Log4J 1.2 users: sl f4j-api.jar,slf4j-10g4j12.jar,and Log4J 1.2.x
© Log4J 1.3 users: sl f4j-api.jar,slf4j-10g4j13.jar, and Log4J 1.3.x
O java.util.loggingusers:slf4j-api.jar andslf4j-jdkl4.jar
© IMPORTANT: Please make sure you are using the right sl f 4j - *. j ar that matches to your logging framework.
For instance, sl f 4j -1 og4j 12.j ar and | og4j - 1. 3. x. j ar can not be used together, and will malfunction.

| have tested this program on both Windows© 2000 professional and linux. If you have any problems getting this program to work, please do not hesitate
to contact us in order to talk to the MINA developers. Also, this tutorial has tried to remain independent of development environments (IDE, editors..

etc). This tutorial will work with any environment that you are comfortable with. Compilation commands and steps to execute the program have been
removed for brevity. If you need help learning how to either compile or execute java programs, please consult the Java tutorial.

Writing the MINA time server

We will begin by creating a file called MinaTimeServer.java. The initial code can be found below:

public class M naTimeServer {

public static void nain(String[] args) {
/'l code will go here next

}

This code should be straightforward to all. We are simply defining a main method that will be used to kick off the program. At this point, we will begin to
add the code that will make up our server. First off, we need an object that will be used to listen for incoming connections. Since this program will be TCP

/IP based, we will add a Socket Accept or to our program.

i mport org.apache. nmina. core. service. | oAcceptor;
i mport org.apache. mna.transport.socket. ni o. Ni oSocket Accept or;

public class M naTi neServer

{
public static void main(String[] args)
{ | oAcceptor acceptor = new Ni oSocket Acceptor();
}

}

With the Ni 0Socket Accept or class in place, we can go ahead and define the handler class and bind the Ni oSocket Accept or to a port.

Next we add a filter to the configuration. This filter will log all information such as newly created sessions, messages received, messages sent, session
closed. The next filter is a Pr ot ocol CodecFi | t er . This filter will translate binary or protocol specific data into message object and vice versa. We use
an existing TextLine factory because it will handle text base message for you (you don't have to write the codec part)

http://www.slf4j.org/
http://logging.apache.org/log4j/docs/
http://logging.apache.org/log4j/docs/
https://cwiki.apache.org/confluence/display/MINA/Contact
http://java.sun.com/docs/books/tutorial/

i nport java. nio.charset. Charset;

i mport org.apache. m na. core. service. | oAcceptor;

i nport org.apache.mna.filter.codec. Protocol CodecFilter;

import org.apache.mina.filter.codec.textline. TextLi neCodecFactory;
inport org.apache.nmina.filter.|ogging. LoggingFilter;

i mport org.apache. m na.transport.socket. ni o. Ni oSocket Accept or;

public class M naTi neServer
{
public static void main(String[] args)

{

| oAccept or acceptor = new N oSocket Acceptor();

acceptor.getFilterChain().addLast("logger", new LoggingFilter());
acceptor.getFilterChain().addLast("codec", new Protocol CodecFilter(new TextLi neCodecFactory(Charset.
forName("UTF-8"))));
}
}

At this point, we will define the handler that will be used to service client connections and the requests for the current time. The handler class is a class that
must implement the interface | oHandl er . For almost all programs that use MINA, this becomes the workhorse of the program, as it services all incoming
requests from the clients. For this tutorial, we will extend the class | oHandl| er Adapt er . This is a class that follows the adapter design pattern which
simplifies the amount of code that needs to be written in order to satisfy the requirement of passing in a class that implements the | oHandl er interface.

inport java.io.l|OException;
i mport java.nio.charset. Charset;

i nport org. apache. mi na. core. service. | oAcceptor;

import org.apache.mina.filter.codec. Protocol CodecFilter;

inport org.apache.mina.filter.codec.textline.TextLi neCodecFactory;
import org.apache.mna.filter.|ogging.LoggingFilter;

i mport org.apache. mina.transport.socket.ni o. Ni oSocket Accept or;

public class M naTi neServer

{

public static void main(String[] args) throws | OException

{

| oAccept or acceptor = new N oSocket Acceptor();

acceptor.getFilterChain().addLast("logger", new LoggingFilter());

acceptor.getFilterChain().addLast("codec", new Protocol CodecFilter(new TextLi neCodecFactory(Charset.
forName("UTF-8"))));

acceptor.setHandl er(new Ti meServerHandler());

We will now add in the Ni oSocket Accept or configuration. This will allow us to make socket-specific settings for the socket that will be used to accept
connections from clients.

http://en.wikipedia.org/wiki/Adapter_pattern

inport java.io.lOException;
i mport java.nio.charset. Charset;

i nport org. apache.
i mport org. apache.
i mport org. apache.
i mport org. apache.
i mport org. apache.
i nport org. apache.

na. core. session. | dl eSt at us;

na. core. servi ce. | oAcceptor;

na.filter.codec. Protocol CodecFilter;
na.filter.codec.textline. TextLi neCodecFactory;
na.filter.logging. Loggi ngFilter;

na. transport.socket. ni o. Nl oSocket Acceptor;

33333 3

public class M naTi nmeServer
{
public static void nain(String[] args) throws | OException

{

| oAccept or acceptor = new Ni oSocket Acceptor();

acceptor.getFilterChain().addLast("logger", new LoggingFilter());
acceptor.getFilterChain().addLast("codec", new Protocol CodecFilter(new TextLi neCodecFactory(Charset.
forName("UTF-8"))));

acceptor.set Handl er(new Ti neServerHandler());

acceptor. get Sessi onConfi g().set ReadBuf f er Si ze(2048);
accept or. get Sessi onConfig().setldl eTime(I1dleStatus. BOTH | DLE, 10);

There are 2 new lines in the MinaTimeServer class. These methods set the set the | oHandl er , input buffer size and the idle property for the sessions.
The buffer size will be specified in order to tell the underlying operating system how much room to allocate for incoming data. The second line will specify
when to check for idle sessions. In the call to setldleTime, the first parameter defines what actions to check for when determining if a session is idle, the
second parameter defines the length of time in seconds that must occur before a session is deemed to be idle.

The code for the handler is shown below:

inport java.util.Date;
i nport org. apache. ni na. core. sessi on. | dl eSt at us;
i nport org. apache. m na. core. servi ce. | oHandl er Adapt er;

i mport org.apache. ni na. core. sessi on. | 0Sessi on;

public class TineServerHandl er extends |oHandl er Adapt er

{

@verride
public void exceptionCaught(|oSession session, Throwabl e cause) throws Exception
{

cause. print StackTrace();
}
@verride
public void nessageRecei ved(|oSession session, Object nessage) throws Exception
{

String str = message.toString();

if(str.trin().equal slgnoreCase("quit")) {

session.close();
return;

}

Date date = new Date();

session.wite(date.toString());

System out.println("Message witten...");
}
@verride
public void sessionldle(|oSession session, IdleStatus status) throws Exception
{

Systemout.printin("IDLE " + session.getldleCount(status));
}

}

The methods used in this class are exceptionCaught, messageReceived and sessionldle. exceptionCaught should always be defined in a handler to
process and exceptions that are raised in the normal course of handling remote connections. If this method is not defined, exceptions may not get properly
reported.

The exceptionCaught method will simply print the stack trace of the error and close the session. For most programs, this will be standard practice unless
the handler can recover from the exception condition.

The messageReceived method will receive the data from the client and write back to the client the current time. If the message received from the client is
the word "quit", then the session will be closed. This method will also print out the current time to the client. Depending on the protocol codec that you use,
the object (second parameter) that gets passed in to this method will be different, as well as the object that you pass in to the session.write(Object)
method. If you do not specify a protocol codec, you will most likely receive a | oBuf f er object, and be required to write out a | oBuf f er object.

The sessionldle method will be called once a session has remained idle for the amount of time specified in the call acceptor.getSessionConfig().
setldleTime(IdleStatus.BOTH_IDLE, 10);.

All that is left to do is define the socket address that the server will listen on, and actually make the call that will start the server. That code is shown below:

inport java.io.lOException;
import java. net.|net Socket Address;
i nport java.nio.charset. Charset;

i mport org. apache.
i mport org. apache.
i mport org. apache.
i mport org. apache.
i nport org. apache.
i mport org. apache.

na. core. servi ce. | oAcceptor;

na. core. session. | dl eSt at us;

na.filter.codec. Protocol CodecFilter;
na.filter.codec.textline. TextLi neCodecFactory;
na.filter.logging.LoggingFilter;

na.transport. socket. ni o. Ni oSocket Accept or;

33333 3

public class M naTi neServer

{
private static final int PORT = 9123;

public static void nain(String[] args) throws | OException
{

| oAccept or acceptor = new Ni oSocket Acceptor();

acceptor.getFilterChain().addLast("logger", new LoggingFilter());

acceptor.getFilterChain().addLast("codec", new Protocol CodecFilter(new TextLi neCodecFact ory(

forName("UTF-8")))):

accept or. set Handl er (new Ti meServerHandl er());

accept or. get Sessi onConfi g().set ReadBuf ferSi ze(2048);

accept or. get Sessi onConfig().setldl eTime(IdleStatus. BOTH | DLE, 10);
acceptor. bi nd(new I net Socket Addr ess(PORT));

Char set .

As you see, there is a call to acceptor.setLocalAddress(new InetSocketAddress(PORT));. This method defines what host and port this server will listen

on. The final method is a call to | oAccept or . bi nd() . This method will bind to the specified port and start processing of remote clients.

Try out the Time server

At this point, we can go ahead and compile the program. Once you have compiled the program you can run the program in order to test out what

happens. The easiest way to test the program is to start the program, and then telnet in to the program:

Client Output Server Output
user@myhost:~> telnet 127.0.0.1 MINA Time server
9123 started.

Trying 127.0.0.1... Message written...

Connected to 127.0.0.1.

Escape character is "',

hello

Wed Oct 17 23:23:36 EDT 2007
quit

Connection closed by foreign host.
user@myhost:~>

What's Next?

Please visit our Documentation page to find out more resources. You can also keep reading other tutorials.

https://cwiki.apache.org/confluence/display/MINA/Documentation
https://cwiki.apache.org/confluence/display/MINA/Documentation#Documentation-Tutorials

	MINA v2.0 Quick Start Guide

