
ONIP-3: Allow User Supplied Logging Capabilities
Document status DRAFT

Document owner Jeff Zemerick

Introduction

OpenNLP uses  and  by default for logging. This is fine for instances in which OpenNLP's CLI tools are being used but System.out() System.err()
may not be ideal when OpenNLP is used as a library. Previous work in this area includes  

 . This proposal presents a method for allowing the user to customize the  -   OPENNLP-675 Absence of logging and usage of System.out CLOSED

default logging behavior when OpenNLP is used as a library.

Current State

As discussed above, OpenNLP currently (as of 1.7.2) defaults to using  and  for logging messages and errors, respectively.System.out() System.err()

The Problem

When using OpenNLP as a library the output of logs to standard out and standard error is not ideal as these logs often need to be captured by the 
application for external storage and reporting (and also just to keep from cluttering up standard out).

Proposed Solution

The proposed solution is to create an OpenNLP  interface that developers can implement to customize the logging. The user can provide their own Logger
implementation of this interface to control OpenNLP's logging. This interface will have to exist in a new project (perhaps  ?) in order to opennlp-model
avoid circular dependencies. (The  project will have a dependency on this project. The user's project can either have an explicit opennlp-tools
dependency on  or a transitive dependency based on the project's requirements.)opennlp-model

An example of the logging interface is:

/**
* Provides logging capabilities.
**/
public interface Logger {
 
  void log(String message);
  void error(String message);
  void error(String message, Exception ex);
 
}

The default implementation used when the user has not provided an implementation of  will be:Logger

The naming of objects in this proposal is mainly for illustrative purposes. I'm not proposing any specific naming and am open to naming 
suggestions.

https://cwiki.apache.org/confluence/display/~jzemerick
https://issues.apache.org/jira/browse/OPENNLP-675


/**
* Default implementation of {@link Logger} that logs
* all messages to standard out and all errors
* to standard error.
**/
public class DefaultLogger implements Logger {
 
  @Override
  public void log(String message) {
    System.out.println(message);
  }
 
  @Override
  public void error(String message) {
    System.err.println(message);
  }
 
  @Override
  public void error(String message, Exception ex) {
    System.err.println(message);
    System.err.println(ex.toString());
  }
 
}

The  class mimics the current behavior of OpenNLP of using .DefaultLogger System.out()

A new project contains the  interface to avoid circular dependencies.Logger



A new class in OpenNLP would be created that stores a static reference to the  implementation. By default this static variable would reference the Logger D
. The user can set their own  implementation at any time through the  function.efaultLogger Logger setLogger()

/**
* Provides access to the {@link Logger}.
**/
public class LoggerConfiguration {
 
  private static Logger logger = new DefaultLogger();
 
  public static void setLogger(Logger l) {
    logger = l;
  }
 
  public static Logger getLogger() {
    return logger;
  }
 
}

Existing logging statements in OpenNLP would be modified to perform the logging via the  class. For example, from LoggingConfiguration NameSampl
:eCountersStream

Current Proposed

https://github.com/apache/opennlp/blob/980366284db98e0515dc5e827aaf4f750699bc80/opennlp-tools/src/main/java/opennlp/tools/cmdline/namefind/NameSampleCountersStream.java#L89
https://github.com/apache/opennlp/blob/980366284db98e0515dc5e827aaf4f750699bc80/opennlp-tools/src/main/java/opennlp/tools/cmdline/namefind/NameSampleCountersStream.java#L89


  public void printSummary() {

    System.out.println("Training data summary:");

    System.out.println("#Sentences: " + 
getSentenceCount());

    System.out.println("#Tokens: " + 
getTokenCount());

    int totalNames = 0;

    for (Map.Entry<String, Integer> counter : 
getNameCounters().entrySet()) {

      LoggerConfiguration.getLogger().log("#" + 
counter.getKey() + " entities: " + counter.
getValue());

      totalNames += counter.getValue();

    }

  }

  public void printSummary() {

    LoggerConfiguration.getLogger().log("Training 
data summary:");

    LoggerConfiguration.getLogger().log("#Sentences: 
" + getSentenceCount());

    LoggerConfiguration.getLogger().log("#Tokens: " 
+ getTokenCount());

    int totalNames = 0;

    for (Map.Entry<String, Integer> counter : 
getNameCounters().entrySet()) {

      LoggerConfiguration.getLogger().log("#" + 
counter.getKey() + " entities: " + counter.
getValue());

      totalNames += counter.getValue();

    }

  }

Summary

This proposal:

Presents a way to let users of OpenNLP as a library to control logging.
Requires:

A new project that contains a Logger interface.
Modifying current  and  calls to reference the new  class.System.out() System.err() LoggerConfiguration

Future Work

A similar approach could be taken for that expect a  object.functions PrintStream

 

https://github.com/apache/opennlp/blob/980366284db98e0515dc5e827aaf4f750699bc80/opennlp-tools/src/main/java/opennlp/tools/cmdline/PerformanceMonitor.java#L52

	ONIP-3: Allow User Supplied Logging Capabilities

