
QUIC

Table of contents

Goal
Design Doc
ToDo
Branching Rules

Branches
Development Rules
How to build

Build Quiche (if you want to use Quiche's QUIC implementation)
Build an SSL library (if you want to use ATS's QUIC implementation)
Build ATS (10-Dev branch)
Build ATS (master branch)
Configuration
Run ATS
Patches

QUIC specific configurations
How to test

Third-party tools
traffic_quic
client specific configurations

Goal
Implement into ATS Core.IETF QUIC

Design Doc
The UDP core and QUIC (It explain how the UDP core works and how the UDPPacket enters the QUIC stack.)

Data Flow (draft-05 : Second Implementation)

This document is not updated

 Please refer to the documentation on GitHub. https://github.com/apache/trafficserver/wiki/HTTP-3-Documentation

https://quicwg.github.io
https://github.com/apache/trafficserver/wiki/HTTP-3-Documentation

QUIC Connection/Stream - ATS Client Session/Transaction mapping (Obsolete: Not too inaccurate, but not worth referencing)

I/O between HttpSM and QUICNetVC (Jan/24/2023: Updated, but QUICFrames are handled by Quiche now)

Packetization (Jan/24/2023: Updated, we just don't do QUIC packetization by ourselves)

ToDo
https://github.com/apache/trafficserver/projects/8

Please label issues and pull-requests with "QUIC".

Branching Rules

Branches

Please use 10-Dev or master. Feature branch was merged and removed.

 : latest branchquic-latest
master: draft-29 (currently)

Development Rules

Pull-Requests
Please send Pull-Requests to "quic-latest" branch until it merged into master branch

TDD
Use Catch as Unit Test Framework. The header file is under .tests/include

How to build
(Last update: Jan/24/2023)

You have two ways to enable QUIC on ATS:

https://github.com/apache/trafficserver/projects/8
https://github.com/apache/trafficserver/tree/quic-latest
https://github.com/apache/trafficserver/tree/master/tests/include

Use Quiche library
This uses Quiche's QUIC implementation

Use an SSL library that supports QUIC (i.e. BoringSSL, or OpenSSL from quictls)
This uses ATS's QUIC implementation

We keep ATS's native QUIC implementation for future improvement in case we need more flexibility, but our focus is currently on using Quiche.

Build Quiche (if you want to use Quiche's QUIC implementation)

Currently ATS is compatible with Quiche 0.16.0.

Please refer to the official documents for the build step. You need to enable ffi feature at minimum. qlog is also available.

https://github.com/cloudflare/quiche

Build an SSL library (if you want to use ATS's QUIC implementation)

ATS now supports 4 variation of SSL libraries. Pick one from below and build it.

BoringSSL

Official BoringSSL works without patches.

https://boringssl.googlesource.com/boringssl

These commits below work, and recent commits would probably work as well.

cbae965ca03825d517efe98cf7b8812584cab4a0 (BoringSSL API version 9)

88024df12147e56b6abd66b743ff441a0aaa09a8 (BoringSSL API version 10)

Please note that the support for BoringSSL API version 9 may be removed without notice in the future.

OpenSSL (quictls/openssl) [RECOMMENDED]

https://github.com/quictls/openssl/tree/OpenSSL_1_1_1j+quic

They also have branches based on OpenSSL 3.0 but we haven't fully supported it.

$ git clone --depth 1 --branch OpenSSL_1_1_1j+quic https://github.com/quictls/openssl
$ cd openssl
$./config --prefix=/PATH/TO/THE/OPENSSL
$ make
$ make install

OpenSSL (tatsuhiro-t/OpenSSL_1_1_1g-quic-draft-32) [OBSOLETE]

This is ngtcp2 developer's customized version.

https://github.com/tatsuhiro-t/openssl/tree/OpenSSL_1_1_1g-quic-draft-32

OpenSSL (akamai/master-quic-support) [INCOMPATIBLE]

This used to work, but it's incompatible now because it's based on OpenSSL master branch.

This is the branch used for .https://github.com/openssl/openssl/pull/8797

https://github.com/akamai/openssl/tree/master-quic-support

Build ATS (10-Dev branch)

Quiche support is only available on quiche branch at the moment.

https://github.com/cloudflare/quiche
https://boringssl.googlesource.com/boringssl
https://github.com/quictls/openssl/tree/OpenSSL_1_1_1j+quic
https://github.com/tatsuhiro-t/openssl/tree/OpenSSL_1_1_1g-quic-draft-32
https://github.com/openssl/openssl/pull/8797
https://github.com/akamai/openssl/tree/master-quic-support

$ git clone --depth 1 --branch 10-Dev https://github.com/apache/trafficserver
$ cd trafficserver
$ autoreconf -if
$./configure --prefix=/PATH/TO/ATS --with-quiche=/PATH/TO/QUICHE --enable-debug
$ make
$ make install

Build ATS (master branch)

The master branch only supports ATS's native implementation at the moment. There is no additional requirement except that you need the SSL library you
just built : Installing From Source Code

$ git clone --depth 1 --branch quic-latest https://github.com/apache/trafficserver
$ cd trafficserver
$ autoreconf -if
$./configure --prefix=/PATH/TO/ATS --with-openssl=/PATH/TO/SSL_LIBRARY --enable-debug
$ make
$ make install

Configuration

Configuration files are located in the /PATH/TO/THE/ATS/etc/trafficserver/.

The detail is documented , but below is the essential settings and only these 4 settings are available if you use Quiche.here

records.config

run 1 UDP thread at least
CONFIG proxy.config.udp.threads INT 1

open server port for quic
CONFIG proxy.config.http.server_ports STRING 4433:quic

enable debug log if you want
CONFIG proxy.config.diags.debug.enabled INT 1
CONFIG proxy.config.diags.debug.tags STRING quic

> CONFIG proxy.config.udp.threads INT 1
23c24
< CONFIG proxy.config.http.server_ports STRING 8080 8080:ipv6

> CONFIG proxy.config.http.server_ports STRING 4433:quic
175,176c176,177
< CONFIG proxy.config.diags.debug.enabled INT 0
< CONFIG proxy.config.diags.debug.tags STRING http|dns

> CONFIG proxy.config.diags.debug.enabled INT 1
> CONFIG proxy.config.diags.debug.tags STRING quic

ssl_multicert.config
 Please use absolute path to the cert and private key until is fixed.Issue #2358

dest_ip=* ssl_cert_name=/PATH/TO/THE/CERT ssl_key_name=/PATH/TO/THE/PRIVATE/KEY/OF/CERT

remap.config
Remap request to origin server.

map / http://127.0.0.1:8000/

https://docs.trafficserver.apache.org/en/latest/getting-started/index.en.html#installing-from-source-code
https://docs.trafficserver.apache.org/en/latest/admin-guide/files/records.config.en.html#quic-configuration
https://github.com/apache/trafficserver/issues/2358

Run ATS

/PATH/TO/THE/ATS/bin/traffic_server

Patches
quic.ogre.com has additional patch to make debug logs readable.

QUIC specific configurations

records.config

CONFIG proxy.config.quic.no_activity_timeout_in INT 30

 Specifies how long Traffic Server keeps QUIC connections to clients open if a transaction stalls.

How to test

Third-party tools

There is a script that builds third-party tools in the repo. It builds h2load and curl with HTTP/3 support. An HTTP/3 client under ngtcp2/example is also
useful when you want to check details.

https://github.com/apache/trafficserver/blob/10-Dev/tools/build_h3_tools.sh

traffic_quic

We have client implementation called "traffic_quic" for test. Not actively maintained, and compatibility with Quiche implementation is not confirmed.

Following docs will be moved to docs.trafficserver.apache.org.

Please note that current name of configurations and default values might be changed before merged in to master branch.

https://github.com/apache/trafficserver/blob/10-Dev/tools/build_h3_tools.sh

// draft-17

$ traffic_quic -h
Usage: traffic_quic [--SWITCH [ARG]]
 switch__________________type__default___description
 -a, --addr str 127.0.0.1 Address
 -o, --output str Write to FILE instead of stdout
 -p, --port str 4433 Port
 -P, --path str / Path
 -T, --debug str quic|vv.. Vertical-bar-separated Debug Tags
 -c, --close on false Enable connection close excercise
 -h, --help Print usage information
 -V, --version Print version string
 --run-root using TS_RUNROOT as sandbox

client specific configurations

traffic_quic loads records.config which is used by traffic_server.

records.config

Enable Version Negotiation Exercise
CONFIG proxy.config.quic.client.vn_exercise_enabled INT 1

Enable Connection Migration Exercise
CONFIG proxy.config.quic.client.cm_exercise_enabled INT 1

Enable TLS session resumption
CONFIG proxy.config.quic.client.session_file STRING session.bin

These configurations can be overridden by a corresponding environment variable like other configurations in records.config.

e.g. Access quic.ogre.com with version negotiation exercise

$ PROXY_CONFIG_QUIC_CLIENT_VN_EXERCISE_ENABLED=1 traffic_quic -a quic.ogre.com -p 4433 -P /en/latest/

	QUIC

