
JAX-RS

JAX-RS

Introduction
JAX-RS Compliance

2.1 Final
2.0 Final
1.1

Project setup and configuration
Migration

From JAX-RS 2.0 to JAX-RS 2.1
From JAX-RS 1.1 to 2.0
From CXF 2.7.x to CXF 3.0.x or 3.1.x
CXF 3.1.2 Provider Sorting Changes

Maven dependencies
CXF 3.2.0
CXF 3.1.x

CXF JAX-RS bundle
What is New
Getting Started with JAX-RS

Understanding the Basics
Support for Data Bindings
How Request URI is Matched
Client API
Bean Validation
Filters, Interceptors and Invokers
Service listings and WADL support
Configuring JAX-RS services
Testing
Debugging
Logging

Advanced Features
Multiparts
Secure JAX-RS services
Failover and Load Distribution Features
Redirection
XSLT and XPath
Complex Search Queries
Model-View-Controller support
Combining JAX-WS and JAX-RS
Integration with Distributed OSGi
OData Support
Other Advanced Features

Maven Plugins
Deployment
Third-party projects
References
How to contribute

Introduction
JAX-RS: Java API for RESTful Web Services is a Java programming language API that provides support in creating web services according to the
Representational State Transfer (REST) architectural style.

CXF supports JAX-RS 2.1 (), 2.0 () and 1.1 ().JSR-370 JSR-339 JSR-311

CXF 3.2.0 supports JAX-RS 2.1. All existing JAX-RS 2.0 and 1.1 applications can be run with CXF 3.2.0.

CXF 3.1.x and 3.0.x support JAX-RS 2.0. Existing JAX-RS 1.1 applications can be run with CXF 3.1.x/3.0.x.

See for more information about the compliance.below

JAX-RS related demos are located under the directory.samples/jax_rs

Outstanding JAX-RS JIRA issues can be found .here

JAX-RS Compliance

http://en.wikipedia.org/wiki/JAX-RS
https://www.jcp.org/en/jsr/detail?id=370
http://jcp.org/en/jsr/detail?id=339
http://jcp.org/en/jsr/detail?id=311
http://svn.apache.org/viewvc/cxf/trunk/distribution/src/main/release/samples/jax_rs/
https://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+CXF+AND+resolution+%3D+Unresolved+AND+component+%3D+JAX-RS+ORDER+BY+priority+DESC&mode=hide

2.1 Final

CXF 3.2.0 has been updated to implement the JAX-RS 2.1 API’s as completely as possible.

If another TCK licensee that uses CXF’s JAX-RS 2.1 implementation in their products finds issues with CXF’s compliance, we are more than happy to fix
bugs that are raised.

2.0 Final

CXF 3.1.x and CXF 3.0.x have been updated to implement the JAX-RS 2.0 API’s as completely as possible without access to the final JAX-RS 2.0 TCK.
We have done extensive testing with JAX-RS 2.0 user applications, samples, and the preliminary TCK to make sure CXF’s implementation is as complete
and compatible as we can make it.
CXF makes and will continue making the best possible effort to have JAX-RS 2.0 and new JAX-RS version implementations technically complete and
offering an environment for running the portable JAX-RS 2.0 applications.
If the final 2.0 TCK is made available to Apache, we will make sure CXF is updated to pass.
If another TCK licensee that uses CXF’s JAX-RS 2.0 implementation in their products finds issues with CXF’s compliance, we are more than happy to fix
bugs that are raised.

1.1

Apache CXF 2.6.x passes the final JAX-RS 1.1 TCK and is formally 1.1 compliant.

Please consult the documentation on the support of Java EE related JAX-RS 1.1 options in its Apache CXF-based JAX-RS runtime.TomEE

CXF 2.7.x and CXF 3.0.0 will fully support and run JAX-RS 1.1 applications but will not pass the JAX-RS 1.1 TCK Signature tests due to

CXF 2.7.x and CXF 3.0.0 depending on 2.0-m10 and 2.0 final versions of JAX-RS 2.0 API.

Project setup and configuration

Migration

From JAX-RS 2.0 to JAX-RS 2.1

JAX-RS 2.1 is backward compatible with JAX-RS 2.0. Please see for more information about JAX-RS 2.1.JAX-RS Basics

All the existing JAX-RS 2.0 and 1.1 applications will run on CXF 3.2.0.

From JAX-RS 1.1 to 2.0

JAX-RS 2.0 is backward compatible with JAX-RS 1.1. Please see for more information about JAX-RS 2.0.JAX-RS Basics

CXF 3.1.x and CXF 3.0.x are expected to support the existing JAX-RS 1.1 applications.

From CXF 2.7.x to CXF 3.0.x or 3.1.x

Please check the for the information about all the changesCXF 3.0.0 Migration Guide
in CXF 3.0.0. Here are more details on the changes specifically affecting JAX-RS users:

1. CXF RequestHandler and ResponseHandler filters have been removed.

These legacy CXF filters are still supported in 2.7.x but no longer in 3.0.0. Please use and instead. Also, ContainerRequestFilter ContainerResponseFilter
 and can be used too.ReaderInterceptor WriterInterceptor

Note, CXF filters had org.apache.cxf.message.Message available in the signature. If CXF Message is used in the existing CXF RequestHandler or
ResponseHandler then use "org.apache.cxf.phase.PhaseInterceptorChain.getCurrentMessage()" or "org.apache.cxf.jaxrs.util.JAXRSUtils.
getCurrentMessage()" to get a Message which has all the contextual information available.

For example, instead of

http://tomee.apache.org/apache-tomee.html
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Basics
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Basics
http://cxf.apache.org/docs/30-migration-guide.html
https://jax-rs-spec.java.net/nonav/2.0/apidocs/javax/ws/rs/container/ContainerRequestFilter.html
https://jax-rs-spec.java.net/nonav/2.0/apidocs/javax/ws/rs/container/ContainerResponseFilter.html
https://jax-rs-spec.java.net/nonav/2.0/apidocs/javax/ws/rs/ext/ReaderInterceptor.html
https://jax-rs-spec.java.net/nonav/2.0/apidocs/javax/ws/rs/ext/WriterInterceptor.html

public class CustomRequestHandler implements RequestHandler {
 public Response handleRequest(Message message, ClassResourceInfo cri) {
 }
}

public class CustomResponseHandler implements ResponseHandler {
 public Response handleResponse(Message message, OperationResourceInfo ori, Response response) {
 }
}

do

public class CustomRequestFilter implements ContainerRequestFilter {
 public void filter(ContainerRequestContext context) {
 Message message = JAXRSUtils.getCurrentMessage();
 ClassResourceInfo cri = message.getExchange().get(OperationResourceInfo.class).getClassResourceInfo();

 // or consider using JAX-RS 2.0 ResourceInfo context

 // finally use context.abortWith(Response) if you need to block the request
 }
}

public class CustomResponseFilter implements ContainerResponseFilter {
 public void filter(ContainerRequestContext inContext, ContainerResponseContext outContext) {
 Message message = JAXRSUtils.getCurrentMessage();
 OperationResourceInfo cri = message.getExchange().get(OperationResourceInfo.class);

 // or consider using JAX-RS 2.0 ResourceInfo context

 // finally, work with ContainerResponseContext to modify specific Response properties
 }
}

The above is only needed to ease the migration of the existing RequestHandler or ResponseHandler implementations. Prefer writing portable JAX-RS 2.0
filter implementations if possible. CXF interceptors can be used to do the CXF specific code if needed.

2. CXF org.apache.cxf.jaxrs.ext.form.Form has been dropped, please use JAX-RS 2.0 instead. For example, use:Form

import javax.ws.rs.core.Form;

Form form = new Form().param("a", "b");

instead of

import org.apache.cxf.jaxrs.ext.form.Form;

Form form = new Form().set("a", "b");

3. CXF WebClient and proxy code has been moved to a new cxf-rt-rs-client module.
Also, jaxrs:client elements for injecting proxies have had the namespace changed from from "http://cxf.apache.org/jaxrs" to "http://cxf.apache.org/jaxrs-
client".

Please see page for more information.JAX-RS Client API

4. WADL Auto Generator code has been moved to a new cxf-rt-rs-service-description module.

5. CXF ParameterHandler has been dropped. Please use instead, it can be used both on the server and client sides.ParameterConverterProvider

6. JAX-RS 2.0 introduces a controversial requirement that the default built-in JAX-RS MessageBodyWriter and JAX-RS MessageBodyReader providers
are to custom providers supporting the same types unless the custom providers are precisely typed, for example, if you have a custom preferred
InputStream reader properly implementing isReadable:

https://jax-rs-spec.java.net/nonav/2.0/apidocs/javax/ws/rs/core/Form.html
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Client+API
https://jax-rs-spec.java.net/nonav/2.0/apidocs/javax/ws/rs/ext/ParamConverterProvider.html

public class MyStreamProvider implements MessageBodyReader<Object> {
 public boolean isReadable(Class<?> cls, ...) {
 return InputStream.class.isAssignableFrom(cls) || Reader.class.isAssignableFrom(cls);
 }
 // other methods
}

then the runtime will ignore it and choose a default InputStream/Reader reader because MyStreamProvider is typed on Object. This was done to deal with
the cases where well-known JSON/etc providers are blindly supporting all types in their isReadable methods by always returning 'true' and then failing
when asked to actually read the incoming stream into InputStream/etc directly. In case of MyStreamProvider, it will need to be split into
MyInputStreamProvider and MyReaderProvider typed on InputStream and Reader respectively.

At CXF level, the users which depend on CXF MultipartProvider to have InputStream or String references to multipart attachments will be affected unless
they use @Multipart annotation. For example, if we have a multipart payload with a single part/attachment only then the following code:

@POST
@Consumes("multipart/form-data")
public void upload(InputStream is) {
}

which in CXF 2.7.x or earlier will return a pointer to first/single individual part, will actually return a stream representing the complete unprocessed multipart
payload. Adding a @Multipart marker will keep the existing code working as expected:

@POST
@Consumes("multipart/form-data")
public void upload(@Multipart InputStream is) {
}

Alternatively, setting a "support.type.as.multipart" contextual property will do.

7. If the custom code throws JAX-RS WebApplicationException with Response containing a non-null entity then custom WebApplicationException
mappers will be bypassed - another problematic requirement, for example, the custom mappers doing the logging will miss on such exceptions.
Set CXF "support.wae.spec.optimization" property to false to disable it.

8. In some cases the matching sub-resource locators will be dropped to precisely meet the current JAX-RS matching algorithm text, please see CXF-5650
for more information. Use a new "keep.subresource.candidates" property to support the existing application if needed.

CXF 3.1.2 Provider Sorting Changes

Starting from CXF 3.1.2 customMessageBodyReader (MBR), MessageBodyWriter (MBW) and ExceptionMapper providers are sorted together with default
providers.

Before CXF 3.1.2 if a custom MBR or MBW matches the read or write selection criteria, example, if MBR Consumes matches Content-Type and its
isReadable() returns true, then

the default providers are not even checked. The specification however does let the custom providers be selected only if no higher priority matching default
provider is available.

For example, suppose you have a custom StringReader which is not typed by String but by Object. In this case the default provider which is typed by
String wins. To have the custom String provider winning one needs to type it by String.

Check the specification or ask at the users list for more details.

Maven dependencies

CXF 3.2.0

The cxf-rt-frontend-jaxrs dependency is required:

 <dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-frontend-jaxrs</artifactId>
 <version>3.2.0</version>
 </dependency>

https://issues.apache.org/jira/browse/CXF-5650

This will in turn pull other such and , check for more information.CXF modules cxf-core cxf-rt-transports-http the pom

.rs/ .rs-api/2.1javax.ws javax.ws dependency provides JAX-RS 2.1 Final API.

CXF 3.1.x

The cxf-rt-frontend-jaxrs dependency is required:

 <dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-frontend-jaxrs</artifactId>
 <version>3.1.12</version>
 </dependency>

This will in turn pull other such and , check for more information.CXF modules cxf-core cxf-rt-transports-http the pom

javax.ws.rs/javax.ws.rs-api/2.0 dependency provides JAX-RS 2.0 Final API.

javax.annotation/javax.annotation-api/1.2 dependency is needed if custom JAX-RS 2.0 filters or interceptors use a
javax.annotation.Priority annotation.

Existing JAX-RS 1.1 applications can run in CXF 3.1.x and CXF 3.0.x.

CXF JAX-RS bundle

Note CXF JAX-RS bundle has been removed in CXF 3.0.0. Prefer depending on the JAX-RS frontend directly. In CXF 3.0.0 a complete CXF all-inclusive b
 can still be used if really needed.undle

Only in CXF 2.7.x or earlier:
A standalone is available which may be of interest to users doing the JAX-RS work only.JAX-RS bundle

Please note that this bundle has a transitive Maven dependency on the Jetty server modules. If you are using Maven and working with other servlet
containers such as Tomcat then please add the following exclusion:

 <dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-bundle-jaxrs</artifactId>
 <version>${cxf.version}</version>
 <exclusions>
 <exclusion>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-server</artifactId>
 </exclusion>
 </exclusions>

 </dependency>

What is New
Complete support for JAX-RS 2.1, please see for more informationJAX-RS Basics
JAX-RS NIO extension based on the early JAX-RS 2.1 API prototype.
JAX-RS RxJava Observable support: as a standard JAX-RS 2.1 RxInvoker client provider and returning it asynchronously from the resource
methods (CXF extension)
JAX-RS Project Reactor Support also based on the JAX-RS 2.1 RxInvoker paradigm
Complete support for JAX-RS 2.0, please see for more informationJAX-RS Basics
Bean Validation 1.1 Support, please see for more informationhttp://cxf.apache.org/docs/validationfeature.html
Swagger Feature for generating documentation from JAX-RS endpointsSwagger API

Getting Started with JAX-RS

Understanding the Basics

You are encouraged to read JAX-RS 2.1 specification to find out the information not covered by this documentation. The specification enhances JSR-370
JAX-RS 2.0 by introducing a support for Reactive Client API extensions, Server Sent Events (client and server), returning CompletableFuture from the
resource methods and the sub-resource classes (as opposed to instances) from the sub-resource locators.

http://cxf.apache.org/project-status.html
https://github.com/apache/cxf/blob/master/rt/frontend/jaxrs/pom.xml
http://javax.ws
http://javax.ws
http://cxf.apache.org/project-status.html
https://github.com/apache/cxf/blob/3.1.x-fixes/rt/frontend/jaxrs/pom.xml
http://svn.apache.org/repos/asf/cxf/trunk/osgi/bundle/all/pom.xml
http://svn.apache.org/repos/asf/cxf/trunk/osgi/bundle/all/pom.xml
http://svn.apache.org/repos/asf/cxf/branches/2.7.x-fixes/osgi/bundle/all/pom.xml
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Basics
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+NIO
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+RxJava
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Project+Reactor+Support
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Basics
http://cxf.apache.org/docs/validationfeature.html
http://cxf.apache.org/docs/swagger2feature.html
http://swagger.io/specification/
http://jcp.org/en/jsr/detail?id=370

You are also encouraged to read JAX-RS 2.0 specification to find out the information not covered by this documentation. The specification JSR-339
introduces many terms such as root resources, resource methods, sub-resources and sub-resource locators, message body readers and writers. JAX-RS
2.0 additionally introduces filters, interceptors, new client API, features, new exception classes, server-side support for asynchronous invocations.

Please see the page for more information.JAX-RS Basics

Support for Data Bindings

JAX-RS MessageBodyReader and MessageBodyWriter can be used to create data bindings for reading and writing data in a number of different formats.
Compliant JAX-RS implementations are expected to support JAXB-annotated beans, JAXP Source objects, InputStreams, etc.

In addition, CXF JAX-RS lets users reuse existing CXF DataBindings for working with JAXB, XBeans, Aegis and SDO.

Please see the page for more information.JAX-RS Data Bindings

How Request URI is Matched

Lets assume you have a web application called 'rest' (example, a 'rest.war' archive). CXFServlet's url-pattern is "/test/*". Finally, jaxrs:server's address is "
/bar".

Requests like /rest/test/bar or /rest/test/bar/baz will be delivered to one of the resource classes in a given jaxrs:server endpoint. For the former request to
be handled, a resource class with @Path("/") should be available, in the latter case - at least @Path("/") or a more specific @Path("/baz").

The same requirement can be expressed by having a CXFServlet with "/*" and jaxrs:server with "/test/bar".

When both CXFServlet and jaxrs:server use "/" then it's a root resource class which should provide a @Path with at least "/test/bar" for the above requests
to be matched.

Generally, it can be a good idea to specify the URI segments which are more likely to change now and then with CXFServlets or jaxrs:server.

Client API

CXF 3.0.0 implements JAX-RS 2.0 Client API.

CXF 2.7.x or earlier provides a comprehensive support for developing RESTful clients by supporting 3 flavors of the client API: proxy-based, HTTP-centric
and XML-centric. CXF-specific client API is supported alongside new JAX-RS 2.0 Client API in CXF 3.0.0.

Please see the page for more information.JAX-RS Client API

Bean Validation

Bean Validation 1.1 is supported since CXF 3.0.0-milestone1. Please see the for more information.http://cxf.apache.org/docs/validationfeature.html

Filters, Interceptors and Invokers

It is possible to intercept and modify the inbound and outbound calls with the help of CXF JAX-RS filters and/or CXF interceptors. Additionally, custom
invokers offer an option to intercept a call immediately before a service bean is invoked.

Please see the page for more information.JAX-RS Filters

Please see the page for more information about new JAX-RS 2.0 filters and interceptors available in CXF 2.7.x and 3.0.0.JAX-RS Basics

Service listings and WADL support

New: Swagger feature has been introduced.

CXF JAX-RS supports . CXF JAX-RS service endpoints can be listed in the service listings page and users can check the WADL documents.WADL

Please see the page for more information.JAXRS Services Description

Configuring JAX-RS services

JAX-RS services can be configured programmatically, using Blueprint, Spring or CXFNonSpringJAXRSServlet.

Please see the page for more information.JAXRS Services Configuration

Testing

http://jcp.org/en/jsr/detail?id=339
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Basics
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Data+Bindings
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Client+API
http://cxf.apache.org/docs/validationfeature.html
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Filters
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Basics
http://www.w3.org/Submission/wadl
https://cwiki.apache.org/confluence/display/CXF20DOC/JAXRS+Services+Description
https://cwiki.apache.org/confluence/display/CXF20DOC/JAXRS+Services+Configuration

JAX-RS services can be easily tested using the embedded Jetty or CXF Local Transport.
Please see the page for more information.JAXRS Testing

Debugging

One may want to use a browser to test how a given HTTP resource reacts to different HTTP Accept or Accept-Language header values and request
methods. For example, if a resource class supports a "/resource" URI then one can test the resource class using one of the following queries :

> GET /resource.xml
> GET /resource.en

The runtime will replace '.xml' or '.en' with an appropriate header value. For it to know the type or language value associated with a given URI suffix, some
configuration needs to be done. Here's an example of how it can be done with Spring:

 <jaxrs:server id="customerService" address="/">
 <jaxrs:serviceBeans>
 <bean class="org.apache.cxf.jaxrs.systests.CustomerService" />
 </jaxrs:serviceBeans>
 <jaxrs:extensionMappings>
 <entry key="json" value="application/json"/>
 <entry key="xml" value="application/xml"/>
 </jaxrs:extensionMappings>
 <jaxrs:languageMappings>
 <entry key="en" value="en-gb"/>
 </jaxrs:languageMappings>
 </jaxrs:server>

CXF also supports a _type query as an alternative to appending extensions like '.xml' to request URIs:

{{ > GET /resource?_type=xml}}

CXF also supports overriding request methods. However note that by default this is not allowed (since CXF 3.3.4) for a CXF service. To enable HTTP
method overriding, specify the "org.apache.cxf.jaxrs.allow.http.method.override" endpoint property as "true".

Two options of overriding HTTP request methods are available - via a query parameter:

> GET /resource?_method=POST

Alternatively, one can specify an HTTP header X-HTTP-Method-Override:

> POST /books
> X-HTTP-Method-Override : PATCH

For example, at the moment the http-centric client API does not support arbitrary HTTP verbs except for those supported
by Java HTTPUrlConnection. When needed, X-HTTP-Method-Override can be set to overcome this limitation.

Finally, a "_ctype" query allows for overriding Content-Type.

Please see the page for more information on how to debug and log service calls in CXF.Debugging and Logging

Logging

Many of the existing CXF features can be applied either to or . For example, to enable logging of requests and responses, jaxrs:server jaxrs:client
simply do:

<beans xmlns:cxf="http://cxf.apache.org/core"
 xsi:schemaLocation="http://cxf.apache.org/core
 http://cxf.apache.org/schemas/core.xsd">
<jaxrs:server>
<jaxrs:features>
 <cxf:logging/>
</jaxrs:features>
<jaxrs:server>
</beans>

Please make sure the namespace is in scope. http://cxf.apache.org/core

Starting from CXF 2.3.0 it is also possible to convert log events into Atom entries and either push them to receivers or make them available for polling.

Please see the page for more information.Debugging and Logging

https://cwiki.apache.org/confluence/display/CXF20DOC/JAXRS+Testing
https://cwiki.apache.org/confluence/display/CXF20DOC/Debugging+and+Logging
http://cxf.apache.org/core
https://cwiki.apache.org/confluence/display/CXF20DOC/Debugging+and+Logging

Advanced Features

Multiparts

Multiparts can be handled in a number of ways. The CXF core runtime provides advanced support for handling attachments which CXF JAX-RS builds
upon.

Please see the page for more information.JAX-RS Multiparts

Secure JAX-RS services

Transport level HTTPS security can be used to protect messages exchanged between CXF JAX-RS endpoints and providers.

Authentication and authorization can be enforced in a number of ways.

Please see the page for more information.Secure JAX-RS Services

Please also check , and pages for more information about the JAX-RS XML Security JAX-RS SAML, JAX-RS Token Authorization JAX-RS OAuth2
advanced security topics.

Failover and Load Distribution Features

Starting from CXF 2.4.1, CXF JAX-RS proxy and WebClient consumers can be backed up by failover and load distribution features.
Please see the page for more information.JAX-RS Failover

Redirection

Starting from CXF 2.2.5 it is possible to redirect the request or response call to other servlet resources by configuring CXFServlet or using CXF JAX-RS
RequestDispatcherProvider.

Please see the page for more information.JAX-RS Redirection

XSLT and XPath

XSLT and XPath are promoted and treated as first-class citizens in CXF JAX-RS. These technologies can be very powerful when generating complex data
or retrieving data of interest out of complex XML fragments.

Please see the page for more information.JAX-RS Advanced XML

Complex Search Queries

Using provides a way to capture search requirements that can be expressed by enumerating name/value pairs, for example, a query parameter beans
query such as '?name=CXF&version=2.3' can be captured by a bean containing setName and setVersion methods. This 'template' bean can be used in
the code to compare it against all available local data.

Versions 2.3 and later of CXF JAXRS support another option for doing advanced search queries using the (FIQL).Feed Item Query Language

Please see the page for more information.JAX-RS Search

Model-View-Controller support

XSLT
Please see the page for more information. on how can be used to generate complex (X)HTML views.JAX-RS Advanced XML XSLTJaxbProvider

JSP

With the introduction of it is now possible for JAXRS service responses be redirected to JSP pages for further RequestDispatcherProvider
processing. Please see the page for more information.JAX-RS Redirection

Combining JAX-WS and JAX-RS

CXF JAX-RS tries to make it easy for SOAP developers to experiment with JAX-RS and combine both JAX-WS and JAX-RS in the same service bean
when needed.

Please see the page for more information.JAX-RS and JAX-WS

https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Multiparts
https://cwiki.apache.org/confluence/display/CXF20DOC/Secure+JAX-RS+Services
http://cxf.apache.org/docs/jax-rs-xml-security.html
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+SAML
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Token+Authorization
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+OAuth2
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Failover
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Redirection
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Advanced+XML
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-Parameterbeans
http://tools.ietf.org/html/draft-nottingham-atompub-fiql-00
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Search
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Advanced+XML
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Redirection
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+and+JAX-WS

Integration with Distributed OSGi

Distributed OSGi RI is a CXF . DOSGi mandates how registered Java interfaces can be exposedsubproject
and consumed as remote services. DOSGi single and multi bundle distributions contain all the OSGI bundles required for a CXF endpoint be successfully
published.

CXF JAX-RS implementations has been integrated with DOSGi RI 1.1-SNAPSHOT which makes it possible to expose Java interfaces as RESTful services
and consume such services using a proxy-based client API.

Please see the ('org.apache.cxf.rs' properties) and a sample for more information. Note that this demo can be run DOSGI Reference page greeter_rest
exactly as a SOAP-based demo as it registers and consumes a similar (but) JAX-RS annotated . In addition, this demo shows how greeter GreeterService
one can register and consume a given interface () without using explicit JAX-RS annotations but providing an out-of-band GreeterService2 user model

.description

OData Support

CXF JAX-RS endpoints can support in two ways by relying on .OData Apache Olingo

First, the OData "$filter" query is supported by the where an endpoint with the application specific API can respond to the filter queries, Search extension
for example, return a collection of books matching the fillter search criteria.

Second, CXF JAX-RS can be used to interpose over the Olingo, as is . Effectively such a CXF endpoint becomes an OData server: all it does demoed here
. The idea is to be able to add CXF specific features and interceptors in front of Olingo.it delegates to Olingo

Other Advanced Features

CXF JAX-RS provides a number of advanced extensions such as the support for the JMS transport, one-way invocations (HTTP and JMS), suspended
invocations (HTTP and JMS), making existing code REST-aware by applying external user models, etc.

Please see the page for more information.JAX-RS Advanced Features

Maven Plugins
Please see the page for more information about the Maven plugins and archetypes which can help with creating CXF JAX-RS JAX-RS Maven Plugins
applications.

Deployment
CXF JAX-RS applications packaged as WAR archives can be deployed into standalone Servlet containers such as Tomcat or Jetty.
Please see the page for the tips on how to deploy the CXF JAX-RS applications into various Java EE and OSGI application servers JAX-RS Deployment
successfully.

Third-party projects
REST Utilities: RESTUtils

References
JSR-000311 JAX-RS: The JavaTM API for RESTful Web Services
Architectural Styles and the Design of Network-based Software Architectures
Representational State Transfer - Wikipedia
RESTful Web Services Cookbook - Solutions for Improving Scalability and Simplicity (O'Reilly Media, February 2010)by Subbu Allamarajuy
RESTful Java with JAX-RS (O'Reilly Media, November 2009)by Bill Burke
Java Web Services: Up and Running (O'Reilly Media, February 2009)by Martin Kalin
RESTful Web Services - Web services for the real world (O'Reilly Media, May 2007)by Leonard Richardson, Sam Ruby
RESTful Web Services (Oracle , August 2006)by Sameer Tyagi
RESTful Web Services - "Unofficial homepage for a book about simple web services." Unknown
How I Explained REST to My Wife (, December 2004)by Ryan Tomayko http://tomayko.com

How to contribute
CXF JAX-RS implementation sits on top of the core CXF runtime and is quite self-contained and isolated from other CXF modules such as jaxws and
simple frontends.

Please check the and see if you are interested in fixing one of the issues.issue list

http://cxf.apache.org/distributed-osgi.html
http://cxf.apache.org/distributed-osgi-reference.html#DistributedOSGiReference-ServiceProviderproperties
http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/greeter_rest/
http://cxf.apache.org/distributed-osgi-greeter-demo-walkthrough.html
http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/greeter_rest/interface/src/main/java/org/apache/cxf/dosgi/samples/greeter/rest/GreeterService.java
http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/greeter_rest/interface/src/main/java/org/apache/cxf/dosgi/samples/greeter/rest/GreeterService2.java
http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/greeter_rest/interface/src/main/resources/OSGI-INF/cxf/jaxrs/GreeterService2-model.xml
http://svn.apache.org/repos/asf/cxf/dosgi/trunk/samples/greeter_rest/interface/src/main/resources/OSGI-INF/cxf/jaxrs/GreeterService2-model.xml
http://www.odata.org/
https://olingo.apache.org/
http://cxf.apache.org/docs/jax-rs-search.html#JAX-RSSearch-OpenDataProtocol
https://github.com/apache/cxf/tree/master/distribution/src/main/release/samples/jax_rs/odata
https://github.com/apache/cxf/blob/master/distribution/src/main/release/samples/jax_rs/odata/src/main/java/odata/server/JaxrsODataService.java
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Advanced+Features
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Maven+Plugins
https://cwiki.apache.org/confluence/display/CXF20DOC/JAX-RS+Deployment
https://github.com/taimos/RESTUtils
http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://oreilly.com/catalog/9780596801694/
http://oreilly.com/catalog/9780596158057/
http://oreilly.com/catalog/9780596521134/
http://oreilly.com/catalog/9780596529260/
http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://www.crummy.com/writing/RESTful-Web-Services/
http://tomayko.com/writings/rest-to-my-wife
http://tomayko.com
http://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=12310511&sorter/order=DESC&sorter/field=priority&resolution=-1&component=12311911

If you decide to go ahead then the fastest way to start is to

do the fast trunk build using ' 'mvn install -Pfastinstall
setup the workspace 'mvn -Psetup.eclipse' which will create a workspace in a 'workspace' folder, next to 'trunk'
import cxf modules from the trunk into the workspace and start working with the cxf-frontend-jaxrs module

If you are about to submit a patch after building a trunk/rt/frontend/jaxrs, then please also run JAX-RS system tests in trunk/systests/jaxrs :
> mvn install

You can also check out the general web page for more information on contributing.Getting Involved

http://cxf.apache.org/getting-involved.html

	JAX-RS

