
REST Plugin

Overview
Features
Mapping REST URLs to Struts 2 Actions

RESTful URL Mapping Logic
Content Types

Usage
Setting Up

Configuration (struts.xml)
REST Only Configuration
REST and non-RESTful URL's Together Configuration

Write Your Controller Actions
Advanced Topics

Custom ContentTypeHandlers
Use Jackson framework as JSON ContentTypeHandler
Settings

Resources
Version History

Overview

The REST Pluginprovides high level support for the implementation of RESTful resource based web applicationsThe REST plugin can cooperate with the C
 to support a zero configuration approach to declaring your actions and results, but you can always use the REST plugin with XML style onvention Plugin

configuration if you like.

If you prefer to see a working code example, instead of reading through an explanation, you can download the and check out the struts2 sample apps stru
 application, a complete WAR file, that demonstrates a simple REST web program.ts2-rest-showcase

Features

Ruby on Rails REST-style URLs
Zero XML config when used with Convention Plugin
Built-in serialization and deserialization support for XML and JSON
Automatic error handling
Type-safe configuration of the HTTP response
Automatic conditional GET support

Mapping REST URLs to Struts 2 Actions

The main functionality of the REST plugin lies in the interpretation of incoming request URL's according the RESTful rules. In the Struts 2 framework, this
'mapping' of request URL's to Actions is handled by in implementation of the interface. Out of the box, Struts 2 uses the ActionMapper DefaultAction

 to map URL's to Actions via the logic you are probably already familiar with.Mapper

The REST plugin provides an alternative implementation, , that provides the RESTful logic that maps a URL to a give action class (RestActionMapper
aka 'controller' in RESTful terms) and, more specifically, to the invocation of a method on that controller class. The following section, which comes from
the Javadoc for the class, details this logic.

RESTful URL Mapping Logic

This Restful action mapper enforces Ruby-On-Rails REST-style mappings. If the method is not specified (via '!' or 'method:' prefix), the method is
"guessed" at using REST-style conventions that examine the URL and the HTTP method. Special care has been given to ensure this mapper works
correctly with the codebehind plugin so that XML configuration is unnecessary.

This mapper supports the following parameters:

 - If set, this value will be the namestruts.mapper.idParameterName of the parameter under which the id is stored. The id will then be

removed from the action name. Whether or not the method is specified, the mapper will try to truncate the identifier from the url and store it as a
parameter.

 - The method name to call for a GETstruts.mapper.indexMethodName request with no id parameter. Defaults to .index

 - The method name to call for a GETstruts.mapper.getMethodName request with an id parameter. Defaults to .show

 - The method name to call for a POSTstruts.mapper.postMethodName request with no id parameter. Defaults to .create

This plugin is only available with Struts 2.1.1 or later

Actions or Controllers? Most Struts 2 developers are familiar with the Action. They are the things that get executed by the incoming requests. In
the context of the REST plugin, just to keep you on your toes, we'll adopt the RESTful lingo and refer to our Actions as . Don't be Controllers
confused; it's just a name!

https://cwiki.apache.org/confluence/display/WW/Convention+Plugin
https://cwiki.apache.org/confluence/display/WW/Convention+Plugin
http://struts.apache.org/download.cgi#struts-ga
http://struts.apache.org/maven/struts2-core/apidocs/org/apache/struts2/dispatcher/mapper/ActionMapper.html
http://struts.apache.org/maven/struts2-core/apidocs/org/apache/struts2/dispatcher/mapper/DefaultActionMapper.html
http://struts.apache.org/maven/struts2-core/apidocs/org/apache/struts2/dispatcher/mapper/DefaultActionMapper.html
http://struts.apache.org/maven/struts2-plugins/struts2-rest-plugin/apidocs/org/apache/struts2/rest/RestActionMapper.html

 - The method name to call for a PUTstruts.mapper.putMethodName request with an id parameter. Defaults to .update

 - The method name to call for a DELETEstruts.mapper.deleteMethodName request with an id parameter. Defaults to .destroy

 - The method name to call for a GETstruts.mapper.editMethodName request with an id parameter and the view specified. Defaults to edit e

.dit
 - The method name to call for a GETstruts.mapper.newMethodName request with no id parameter and the view specified. Defaults to new ed

.itNew

The following URL's will invoke its methods:

GET: /movies => method=index
 => method= , id=GET: /movies/Thrillers show Thrillers

 => method= , id=GET: /movies/Thrillers;edit edit Thrillers

 => method= , id=GET: /movies/Thrillers/edit edit Thrillers

 => method=GET: /movies/new editNew

 => method=POST: /movies create

 => method= , id=PUT: /movies/Thrillers update Thrillers

 => method= , id=DELETE: /movies/Thrillers destroy Thrillers

Or, expressed as a table:

HTTP method URI Class.method parameters

GET /movie Movie.index

POST /movie Movie.create

PUT /movie/Thrillers Movie.update id="Thrillers"

DELETE /movie/Thrillers Movie.destroy id="Thrillers"

GET /movie/Thrillers Movie.show id="Thrillers"

GET /movie/Thrillers/edit Movie.edit id="Thrillers"

GET /movie/new Movie.editNew

Content Types

In addition to providing mapping of RESTful URL's to Controller (Action) invocations, the REST plugin also provides the ability to produce multiple
representations of the resource data. By default, the plugin can return the resource in the following content types:

HTML
XML
JSON

There is nothing configure here, just add the conent type extension to your RESTful URL. The framework will take care of the rest. So, for instance,
assuming a Controller called Movies and a movie with the id of superman, the following URL's will all hit the

http://my.company.com/myapp/movies/superman
http://my.company.com/myapp/movies/superman.xml
http://my.company.com/myapp/movies/superman.xhtml
http://my.company.com/myapp/movies/superman.json

Usage

This section will walk you through a quick demo. Here are the steps in the sequence that we will follow.

Setting Up your Project
Configuring your Project
Writing your Controllers

To simulate the HTTP methods PUT and DELETE, since they aren't supported by HTML, the HTTP parameter "_method" will be used.

Note, these content types are supported as incoming data types as well. And, if you need, you can extend the functionality by writing your own
implementations of org.apache.struts2.rest.handler.ContentTypeHandler and registering them with the system.

Setting Up

Assuming you have a normal Struts 2 application, all you need to do for this REST demo is to add the following two plugins:

Struts 2 Rest Plugin
Struts 2 Convention Plugin

Note, you can download the jars for these plugins from Maven Central

Configuration ()struts.xml

Just dropping the plugin's into your application may not produce exactly the desired effect. There are a couple of considerations. The first consideration is
whether you want to have any non-RESTful URL's coexisting with your RESTful URL's. We'll show two configurations. The first assumes all you want to do
is REST. The second assumes you want to keep other non-RESTful URL's alive in the same Struts 2 application.

REST Only Configuration

Instruct Struts to use the REST action mapper:

<constant name="struts.mapper.class" value="rest" />

At this point, the REST mapper has replaced the DefaultActionMapper so all incoming URL's will be interpreted as RESTful URL's.

We're relying on the Convention plugin to find our controllers, so we need to configure the convention plugin a bit:

<constant name="struts.convention.action.suffix" value="Controller"/>
<constant name="struts.convention.action.mapAllMatches" value="true"/>
<constant name="struts.convention.default.parent.package" value="rest-default"/>
<constant name="struts.convention.package.locators" value="example"/>

REST and non-RESTful URL's Together Configuration

If you want to keep using some non-RESTful URL's alongside your REST stuff, then you'll have to provide for a configuration that utilizes to mappers.

First, you'll need to re-assert the extensions that struts knows about because the rest plugin will have thrown out the default extension.action

 <constant name="struts.action.extension" value="xhtml,,xml,json,action"/>

Next, we will configure the , which is part of the core Struts 2 distribution, to have some URL's routed to the Rest mapper PrefixBasedActionMapper
and others to the default mapper.

 <constant name="struts.mapper.class" value="org.apache.struts2.dispatcher.mapper.PrefixBasedActionMapper" />
 <constant name="struts.mapper.prefixMapping" value="/rest:rest,:struts"/>

And, again, we're relying on the Convention plugin to find our controllers, so we need to configure the convention plugin a bit:

<constant name="struts.convention.action.suffix" value="Controller"/>
<constant name="struts.convention.action.mapAllMatches" value="true"/>
<constant name="struts.convention.default.parent.package" value="rest-default"/>
<constant name="struts.convention.package.locators" value="example"/>

As with all configuration of Struts 2, we prefer using elements in our .<constant/> struts.xml

Note, you don't have to use the Convention plugin just to use the REST plugin. The actions of your RESTful application can be defined in XML
just as easily as by convention. The REST mapper doesn't care how the application came to know about your actions when it maps a URL to an
invocation of one of it's methods.

Plugins contain their own configuration. If you look in the Rest plugin jar, you'll see the and in that you'll see some struts-plugin.xml
configuration settings made by the plugin. Often, the plugin just sets things the way it wants them. You may frequently need to override those
settings in your own .struts.xml

http://struts.apache.org/2.3.8/docs/convention-plugin.html
http://search.maven.org/#search%7Cga%7C1%7Cstruts2-convention-plugin

Write Your Controller Actions

Once everything is configured, you need to create the controllers. Controllers are simply actions created with the purpose of handling requests for a give
RESTful resource. As we saw in the mapping logic above, various REST URL's will hit different methods on the controller. Traditionally, normal Struts 2
actions expose the method as their target method. Here's a sample controller for a resource. Note, this sample doesn't implement all of execute orders
the methods that can be hit via the RESTful action mapper's interpretation of URL's.

package org.apache.struts2.rest.example;

public class OrdersController implements ModelDriven<Order> {

 private OrderManager orderManager;
 private String id;
 private Order model;

 // Handles /orders/{id} GET requests
 public HttpHeaders show() {
 model = orderManager.findOrder(id);
 return new DefaultHttpHeaders("show")
 .withETag(model.getUniqueStamp())
 .lastModified(model.getLastModified());
 }

 // Handles /orders/{id} PUT requests
 public String update() {
 orderManager.updateOrder(model);
 return "update";
 }

 // getters and setters
}

In this example, the interface is used to ensure that only my model, the Order object in this case, is returned to the client, otherwise, the ModelDriven
whole object would be serialized.OrdersController

You may wonder why the method returns a object and the method returns the expected result code String. The REST show() HttpHeaders update()
Plugin adds support for action methods that return objects as a way for the action to have more control over the response. In this example, HttpHeaders
we wanted to ensure the response included the ETag header and a last modified date so that the information will be cached properly by the client. The Htt

 object is a convenient way to control the response in a type-safe way.pHeaders

Also, notice we aren't returning the usual "success" result code in either method. This allows us to use the special features of the to Codebehind Plugin
intuitively select the result template to process when this resource is accessed with the extension. In this case, we can provide a customized .xhtml
XHTML view of the resource by creating and for the respective methods./orders-show.jsp /orders-update.jsp

Advanced Topics

The following sections describe some of the non-standard bells and whistles that you might need to utilize for your application's more non-standard
requirements.

Custom ContentTypeHandlers

If you need to handle extensions that aren't supported by the default handlers, you can create your own implementation and ContentTypeHandler
define it in your :struts.xml

<bean name="yaml" type="org.apache.struts2.rest.handler.ContentTypeHandler" class="com.mycompany.
MyYamlContentHandler" />

If the built-in content type handlers don't do what you need, you can override the handling of any extension by providing an alternate handler. First, define
your own and declare with its own alias. For example:ContentTypeHandler

Where's ActionSupport? Normally, you extend ActionSupport when writing Struts 2 actions. In these case, our controller doesn't do that. Why,
you ask? ActionSupport provides a bunch of important functionality to our actions, including support for i18n and validation. All of this
functionality, in the RESTful case, is provided by the default interceptor stack defined in the REST plugin's struts-plugin.xml file. Unless you
willfully break your controller's membership in the rest-default package in which that stack is defined, then you'll get all that functionality you are
used to inheriting from ActionSupport.

https://cwiki.apache.org/confluence/display/WW/Codebehind+Plugin

<bean name="myXml" type="org.apache.struts2.rest.handler.ContentTypeHandler" class="com.mycompany.
MyXmlContentHandler" />

Then, tell the REST Plugin to override the handler for the desired extension with yours. In , it would look like this:struts.properties

struts.rest.handlerOverride.xml=myXml

Use Jackson framework as JSON ContentTypeHandler

The default JSON Content Handler is build on top of the . If you prefer to use the for JSON serialisation, you can configure JSON-lib Jackson framework
the JacksonLibHandler as Content Handler for your json requests.

First you need to add the jackson dependency to your web application by downloading the jar file and put it under WEB-INF/lib or by adding following xml
snippet to your dependencies section in the pom.xml when you are using maven as build system.

<dependency>
 <groupId>org.codehaus.jackson</groupId>
 <artifactId>jackson-jaxrs</artifactId>
 <version>1.9.13</version>
</dependency>

Now you can overwrite the Content Handler with the Jackson Content Handler in the struts.xml:

<bean type="org.apache.struts2.rest.handler.ContentTypeHandler" name="jackson" class="org.apache.struts2.rest.
handler.JacksonLibHandler"/>
<constant name="struts.rest.handlerOverride.json" value="jackson"/>

<!-- Set to false if the json content can be returned for any kind of http method -->
<constant name="struts.rest.content.restrictToGET" value="false"/>

<!-- Set encoding to UTF-8, default is ISO-8859-1 -->
<constant name="struts.i18n.encoding" value="UTF-8"/>

Settings

The following settings can be customized. See the .developer guide
For more configuration options see the Convention Plugin Documentation

Setting Description Default Possible Values

struts.rest.
handlerOverride.
EXTENSION

The alias for the implementation that handles the EXTENSION ContentTypeHandler
value

N/A Any declared alias for a Conten
 implementationtTypeHandler

struts.rest.
defaultExtension

The default extension to use when none is explicitly specified in the request xhtml Any extension

struts.rest.
validationFailureStat
usCode

The HTTP status code to return on validation failure 400 Any HTTP status code as an
integer

struts.rest.namespace Optional parameter to specify namespace for REST services / eg. /rest

struts.rest.content.
restrictToGET

Optional parameter, if set to true blocks returning content from any other methods than
GET, if set to false, the content can be returned for any kind of method

true eg. put struts.rest.content.
restrictToGET = false in struts.
properties

Resources

http://www.b-simple.de/documents - Short RESTful Rails tutorial (PDF, multiple languages)
RESTful Web Services - Highly recommend book from O'Reilly
Go Light with Apache Struts 2 and REST - Presentation by Don Brown at ApacheCon US 2008

http://json-lib.sourceforge.net/
http://jackson.codehaus.org/
http://cwiki.apache.org/confluence/display/WW/Configuration+Files
https://cwiki.apache.org/confluence/display/WW/Convention+Plugin
http://www.b-simple.de/documents
http://www.amazon.com/RESTful-Web-Services-Leonard-Richardson/dp/0596529260
http://raibledesigns.com/rd/entry/go_light_with_apache_struts

Version History

From Struts 2.1.1+

	REST Plugin

