
1.
2.
3.

Simple database access sample application
{scrollbar}

top

This article guides you through the JDBC features in the Apache Geronimo appplication server. To demonstrate the JDBC features, we use a simple
Inventory application which has JSP, Servlets to handle web related features and inbuilt Derby as database.

Inventory Application will use the Service Provider Interface(SPI) method to access it's database. In this method the application uses a JDBC DataSource
interface to establish connections with the database. This is the preferred access method for a J2EE application for several reasons:

Program code will be totally database independent. Driver information, database location, and configuration parameters are stored in the J2EE
Server.
It allows the use of connection pooling. The J2EE Server connection manager effectively manages
connections to greatly improve performance and scalability.
It enables the database to be used by Enterprise JavaBeans (EJB) to implement business logic as part of the J2EE Server. Implementing an EJB
tier, though not required, lays the foundation for creating a highly scalable, distributed application architecture.

After reading this article you should be able get the best out of the JDBC features of Geronimo, such as defining database pools and using DataSources to
access databases.

This article is organized in to following sections.

Overview of JDBC Features
Application Overview
Configuring, Building and Deploying the Sample Application
Testing of the Sample Application
Summary

Overview of JDBC Features overview
JDBC implementation in application servers vary from application server to other. Following table gives a feature list of JDBC in Apache Geronimo.

Feature Description

JDBC access Geronimo does not have any direct integration with JDBC but supports access through the generic J2CA framework. The TranQL project
has J2CA adapters for various databases.

JCA implementation Geronimo supports the JCA 1.5 specification and is backward compatible to the JCA 1.0 specification.

Data sources supported TranQL has generic wrappers for each data sources.

Data source failover TranQL has specialized drivers for certain databases (including Apache Derby, Oracle and DB2) that provide a tighter integration with the
advanced features of the driver.
It is at this level that features such as load-balancing and failover would be provided. You can also use a C-JDBC wrapper for providing
database clustering and failover.

XA support Supports XA transactions, Local Transactions, and No transaction.

Connection Manager
Configurability

The J2CA framework is interceptor based which allows different parts of the connection framework to be plugged in.

JTA implementation Transaction support is provided through Geronimo Specific Transaction Managing Framework and HOWL.

Connection pooling and
management

Custom Geronimo Code and TranQL used for connection pooling and management.

Legacy driver support Geronimo provides this through the TranQL- connector JDBC to JCA wrapper in Geronimo. Supports JDBC 3.0 and 2.1.

Application Overview application
The Inventory application in this article only supports three basic usecases of such applications.

Add Items to the Stock
Recieve Items
Issue Items
The application workflow statrs with adding item information to the stock. Then it allows enter goods recieving and issuing information. All those
updated information are stored in the inbuilt Derby database.

The Inventory Web Application has following list of pages

Welcome
Add Item
Recieve Goods
Issue Goods

The following figure illustrates the application flow.

Welcome page of the application acting as a notice board which displays current stock of each item. Through the Welcome page users can access Add
Item, Recieve Goods or Issue Goods Pages. Upon successful completion of each activity, the page will be redirected back to the Welcome page with
updated stock information. Add Item helps to define items in the stock, then 0 number of items will be added to the stock. Recieve and Issue Goods pages
represent Goods Recieving and Issueing activities of the application respectively.

Application contents

The Inventory application consist of following list of packages and classes.

org.apache.geronimo.samples.inventory
Item - represents Item in the Inventoy.

org.apache.geronimo.samples.inventory.services
InventoryManager - represents list of services offered by the inventory.

org.apache.geronimo.samples.inventory.dao
ItemDAO - contains all database access methods.

org.apache.geronimo.samples.inventory.exception
DuplicateItemIdException - custom exception to handle duplication item id scenario.
NotSufficientQuantityException - Custom exception to handle not sufficient quantity situation.

org.apache.geronimo.samples.inventory.util
DBManager - handle database related activities such as issueing database connections.

org.apache.geronimo.samples.inventory.web
AddItemServlet - dispatch add item information to service layer.
IssueingServlet - dispatch issueing items information to service layer.
RecievingServlet - dispatch receving items information to service layer.

The list of web application files in the application is depicted in the following.

java |- jsp |- add.jsp |- error.jsp |- issue.jsp |- recv.jsp |- WEB-INF |- geronimo-web.xml |- web.xml |- welcome.jsp

Application defines a datasource with the help of and files. add a link between the database pool geronimo-web.xml web.xml geronimo-web.xml
already deployed in the server. It referes database pool via it's .artifactId

xmlsolidgeronimo-web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns="http://geronimo.apache.org/xml/ns/j2ee/web-1.1"> <environment>
<moduleId> <artifactId>InventoryApp</artifactId> </moduleId> <dependencies> <dependency> <groupId>console.dbpool</groupId>

<artifactId>InventoryPool</artifactId> </dependency> </dependencies> </environment> <context-root>/inventory</context-root> <!-- define a reference
name to the db pool--> <resource-ref> <ref-name>jdbc/InventoryDS</ref-name> <resource-link>InventoryPool</resource-link> </resource-ref> </web-
app>

Following is the of the Inventory application. It uses same name as in the , which is used to create the datasource.web.xml geronimo-web.xml

xmlsolidweb.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001
/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4"> <welcome-
file-list> <welcome-file>welcome.jsp</welcome-file> </welcome-file-list> <servlet> <display-name>AddItemServlet</display-name> <servlet-
name>AddItemServlet</servlet-name> <servlet-class>org.apache.geronimo.samples.inventory.web.AddItemServlet</servlet-class> </servlet> <servlet>
<display-name>IssueingServlet</display-name> <servlet-name>IssueingServlet</servlet-name> <servlet-class>org.apache.geronimo.samples.inventory.
web.IssueingServlet</servlet-class> </servlet> <servlet> <display-name>RecievingServlet</display-name> <servlet-name>RecievingServlet</servlet-
name> <servlet-class>org.apache.geronimo.samples.inventory.web.RecievingServlet</servlet-class> </servlet> <servlet-mapping> <servlet-
name>AddItemServlet</servlet-name> <url-pattern>/add_item</url-pattern> </servlet-mapping> <servlet-mapping> <servlet-name>IssueingServlet<
/servlet-name> <url-pattern>/issue</url-pattern> </servlet-mapping> <servlet-mapping> <servlet-name>RecievingServlet</servlet-name> <url-pattern>
/recv</url-pattern> </servlet-mapping> <!-- reference name exposed as a datasource --> <resource-ref> <res-ref-name>jdbc/InventoryDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type> <res-auth>Container</res-auth> <res-sharing-scope>Shareable</res-sharing-scope> </resource-ref> </web-
app>

Next important phase of the application is accessing defined datasource from the source code. This part is handled by the class.DBManager

javasolidDBManager.java public static Connection getConnection(){ Connection con = null; try { Context context = new InitialContext(); DataSource ds =
(DataSource)context.lookup("java:comp/env/jdbc/InventoryDS"); con = ds.getConnection(); } catch (NamingException e) { e.printStackTrace(); } catch
(SQLException e) { e.printStackTrace(); } return con; }

Sample Database

The sample database that is being used to demonstrate this application is in-built Derby database. The name of the sample database is and InventoryDB
it consists of two tables, namely ITEM and ITEM_MASTER. The fields for each of these tables are described below.

Table Name Fields

ITEM ITEM_ID (PRIMARY KEY)
ITEM_NAME
DESCRIPTION

ITEM_MASTER ITEM_ID (PRIMARY KEY)
QUANTITY

The ITEM table stores the data related to the items while ITEM_MASTER stores the quantity in hand of each item.

Tools used

The tools used for developing and building the Inventory sample application are:

Apache Derby

Apache Derby, an Apache DB subproject, is a relational database implemented in Java. Its footprint is so small you can easily embed it in any Java-based
solution. In addition to its embedded framework, Derby supports a more familiar client/server framework with the Derby Network Server.
http://db.apache.org/derby/index.html

Eclipse

The Eclipse IDE was used for development of the sample application. This is a very powerful and popular open source development tool. It has integration
plug-ins for the Geronimo too. Eclipse can be downloaded from the following URL:
http://www.eclipse.org

Apache Ant

Ant is a pure Java build tool. It is used for building the war files for the Inventory application. Ant can be downloaded from the following URL:
http://ant.apache.org

Back to Top

Configuring, Building and Deploying the Sample Application configure
Download the Inventory application from the following link:
Inventory

After decompressing the given file, the inventory directory is created.

Configuring

http://db.apache.org/derby/index.html
http://www.eclipse.org
http://ant.apache.org
https://cwiki.apache.org/confluence/download/attachments/11507/inventory.zip?version=1&modificationDate=1158646540000&api=v2

1.
2.
3.
4.
5.

1.
2.

3.
4.

1.
2.
3.

Configuration of the application consists of creating the database and defining the connection pool to access it.

Creating and Populating Database

After starting Apache Geronimo log into the console and follow the given steps to create the database.InventoryDB

solidInventoryDB.sql CREATE TABLE item(item_id VARCHAR(10) PRIMARY KEY, item_name VARCHAR(25), description VARCHAR(100)); CREATE
TABLE item_master(item_id VARCHAR(10) PRIMARY KEY, quantity INTEGER); INSERT INTO item VALUES('001', 'Item 1', 'Test Item 1'); INSERT
INTO item VALUES('002', 'Item 2', 'Test Item 2'); INSERT INTO item VALUES('003', 'Item 3', 'Test Item 3'); INSERT INTO item VALUES('004', 'Item 4',
'Test Item 4'); INSERT INTO item_master VALUES('001', 12); INSERT INTO item_master VALUES('002', 8); INSERT INTO item_master VALUES('003',
49); INSERT INTO item_master VALUES('004', 34);

Select link from the panel on the left.DB Manager Console Navigation
Give the database name as and click button.InventoryDB Create
Select to the field.InventoryDB Use DB
Open in the directory from a text editor.InventoryDB.sql inventory/config
Paste the content to the text area and press button.InventoryDB.sql SQL Commands Run SQL

Deploying Database Connection Pool Plan

The application server going to access through a connection pool. Following are the list of steps to create the pool.InventoryDB

xmlsolidInventoryPool.xml <?xml version="1.0" encoding="UTF-8"?> <connector xmlns="http://geronimo.apache.org/xml/ns/j2ee/connector-1.1"> <dep:
environment xmlns:dep="http://geronimo.apache.org/xml/ns/deployment-1.1"> <dep:moduleId> <dep:groupId>console.dbpool</dep:groupId> <dep:
artifactId>InventoryPool</dep:artifactId> <dep:version>1.0</dep:version> <dep:type>rar</dep:type> </dep:moduleId> <dep:dependencies> <dep:
dependency> <dep:groupId>geronimo</dep:groupId> <dep:artifactId>system-database</dep:artifactId> <dep:type>car</dep:type> </dep:dependency> <
/dep:dependencies> </dep:environment> <resourceadapter> <outbound-resourceadapter> <connection-definition> <connectionfactory-interface>javax.sql.
DataSource</connectionfactory-interface> <connectiondefinition-instance> <name>InventoryPool</name> <config-property-setting name="Driver">org.
apache.derby.jdbc.EmbeddedDriver</config-property-setting> <config-property-setting name="UserName">app</config-property-setting> <config-property-
setting name="ConnectionURL">jdbc:derby:InventoryDB</config-property-setting> <connectionmanager> <local-transaction/> <single-pool> <max-
size>10</max-size> <min-size>0</min-size> <match-one/> </single-pool> </connectionmanager> </connectiondefinition-instance> </connection-
definition> </outbound-resourceadapter> </resourceadapter> </connector>

Click on from the .Deploy New Console Navigation
Load the to the input box from the tranql-connector-1.2.rar Archive <geronimo_home>/repository/tranql/tranql-connector/1.2/tranql-

 location.connector-1.2.rar
Load the to the input box from directory.InventoryPool.xml Plan inventory/config
Press button to deploy connection pool in to the server.Install

Upon successful deployment will appear on the list of the Geronimo Console.InventoryPool Database Pools

Building

Inventory application comes with an Ant script to help users to build from source code. Use the command prompt to navigate into the directory inventory
and just give command to build. It will create the file under the folder within . Now, you are ready to deploy ant Inventory.war releases inventory
Inventory web application in to the Geronimo Application server.

Deploying

Deploying sample application is pretty straight forward as we are going to use the Geronimo Console.

Click the link on the panel.Deploy New Console Navigation
Load file from folder into the input box.Inventory.war inventory/releases Archive
Press button to deploy the application in the server.Install

Back to Top

Testing of the Sample Application testing
To test the sample application, open a browser and type . The Welcome page of Inventory application which is acts as a http://localhost:8080/inventory
notice board will be loaded.

The user can directly access Add Items, Recieve Goods and Issue Goods functionalities from the Welcome page.

Summary summary
This article has shown you how to use JDBC features inside the Geronimo Application Server. You followed step-by-step instructions to build, deploy and
test a sample application to elaborate these features.

The highlights of this article are: -

http://localhost:8080/inventory

JDBC features in Apache Geronimo.
Create a database and populate the data in Geronimo with in built Derby Database.
Deploy a database pool plan to access a database.
Deploy web archives to access database via the pool defined in Geronimo.

	Simple database access sample application

