How to Write DUnit/Integration tests using geode's JUnit
Rules

This articles describes how to write geode Dunit tests using Junit rules.

Use ClusterStartupRule

This rule would ease the steps to start up locator/server in specific VMs with specified gemfire properties. The rule will take care of tearing down and
cleaning up the VMs and file systems after tests are done so you don't need to worry about closing anything.

Below is a simple Example of using this rule with default properties:

@at egor y(Di stributedTest. cl ass)
public class Exanpl eTest {

@ul e
public ClusterStartupRule cluster = new ClusterStartupRule(); //See Note 1

@est
public void sinpleUsage() throws Exception {
/] start up a default locator in vnD
Menber VM | ocator = cluster.startLocatorVMO0); //See Note 2

/'l start up a default server in vnml, joining the |ocator
Menber VM server = cluster.startServerVM 1, locator.getPort()); // see Note 3

/1 you can use these attributes of the |ocator/server

| ocator.getNane(); // by default this would locator-0

locator.getPort(); // these are the random ports by default.

| ocat or. getJnmxPort();

| ocator.getHttpPort();

| ocator.getWorkingDir(); // this should be dunit/vnmD unless the rule is constructed using tenp fol der.

/1 you can al so do code invocation inside the vns

I ocator.invoke(()->{
/1 access the locator started in this VM
Internal Locator internal Locator = C usterStartupRul e. get Locator();
/] operations and assertions here

1)

server.invoke(()->{
/| access the cache and server in this VM
I nt ernal Cache cache = Cl usterStartupRul e. get Cache();
CacheServer cacheServer = Locator Server StartupRul e. serverStarter. getServer();
/] operations and assertions here.

1)

1. This is the most common way to create the rule. There are two more variations of it

/1 this will use a tenporary folder for the working dir of the locator/server created by this rule.
/1 use this if you want to exam ne the content of the workingdir of the server/locator and do not
/1 want it to be contaminated with dunit test |auncher's own | ogs.

public ClusterStartupRul e cluster = new CusterStartupRule().w thTenpWorkingDir();

/Il O
/1 this will have the server/locators logs go into the log file instead of go into the console.

public CusterStartupRule cluster = new CusterStartupRul e().w thLogFile();

//or both.

2. When you start up a locator/server, you can also pass in a properties object that would configure the server/locator

Properties |ocatorProps = new Properties();

| ocat or Props. set Property(Configurati onProperties. GROUPS, "groupl, group2");

| ocat or Props. set Property(ConfigurationProperties. HTTP_SERVI CE_PORT, "8080");

| ocat or Props. set Property(ConfigurationProperties. ANY_PROPERTIES, value); // set any genfire properties
that are in ConfigurationProperties

Menber VM | ocator = cluster.startLocatorVM O, | ocatorProps);

Properties serverProps = new Properties();// set any genfire properties that are in
ConfigurationProperties

| ocat or Props. set Property(ConfigurationProperties. ANY_PROPERTI ES, val ue);

Menber VM server = cluster.startServer (1, serverProps, |ocator.getPort);

Use LocatorStarterRule

This rule starts up a locator in the current JUnit VM instead of in a dunit vm. It's useful in integration tests. Here is a simple example of it:

@ul e
public LocatorStarterRule |locatorRule = new LocatorStarterRule() // sinplest way to create the rule, you can
call one or nmore of the following to configure the rule

.wi thProperty(ConfigurationProperties. ANY_PROPERI TES, value) // configure the locator with a single property

.withProperties(properties) // configure the locator with a property object

.wi thJMXManager () // start the locator with JMX nmanager, this is the default behavior for |ocator, so even
if you don't call this, a jnkManager will be started for you

.wi thConnectionToLocator() // connect this locator with other |ocators.

.wi thSecurityManager (Si npl eTest SecurityManager.class) // a convenient way to start the locator with a
security manager, sane effect as a .w thProperty call.

.withAutoStart(); // this will start the |ocator before executing any test code.

@est
public void test() throws Exception {
/1 if the locator is started, then we can use it to get these attributes:
| ocatorRul e.getNane(); // by default this would be locator, if not configured by the properties
| ocatorRul e.getPort(); // these are the random ports by default if not configured by the properties
| ocat or Rul e. get JnxPort ();
| ocatorRul e. get Ht t pPort () ;
I nternal Locaotr |ocator = |ocatorRule.getLocator();

/1 if the locator is not auto started, you can start the locator by calling
locatorRul e. startLocator();

/'l operations and assertions here.

Use ServerStarterRule

This rule starts up a server in the current JUnit VM instead of in a dunit vm. It's useful in integration tests. Here is a simple example of it:

@ul e
public ServerStarterRule serverRule = new ServerStarterRule() // sinplest way to create the rule, you can call
one or nore of the following to configure the rule
.wi thProperty(ConfigurationProperties. ANY_PROPERI TES, value) // configure the locator with a single property
.WithProperties(properties) // configure the locator with a property object
.wi thJMXManager () // start the server with JMX manager
.wi t hConnectionToLocator() // connect this server with another |ocator.
. Wi thSecurityManager (Si npl eTest SecurityManager.class) // a convenient way to start the locator with a
security manager, sanme effect as a .withProperty call.
. Wi t hEnbeddedLocator() // start an enbedded | ocator on this server
.wi thPDXPersistent() // with pdx persistent
.withRestService() // start the rest service on this server
.withAutoStart(); // this will start the server before executing any test code.
. Wi t hRegi on(REG ON_SHORTCUT, regionNane);// this will create the region before executing any test code

@est

public void test() throws Exception {
/1 if the server is started, then we can use it to get these attributes:
serverRul e. getName(); // by default this would be server, if not configured by the properties
serverRul e.getPort(); // these are the random ports by default if not configured by the properties
server Rul e. get JnxPort ();
serverRul e. get Ht t pPort () ;
I nt ernal Cache cache = serverRul e. get Cache();

/1 if the locator is not auto started, you can start the locator by calling
serverRul e. start Server();

/'l operations and assertions here.

Use GfshCommandRule

This is the rule that's useful if you would like to test out some gfsh commands and verify the output. To use this, you will need to have a jmxManager
running (either a locator or a server with JmxManager started).

Here is some example of how you would want to to use the rules:

This example auto starts a locator and then use the gfshRule to connect to the locator in the @Before

@Cat egory(I ntegrationTest. cl ass)
public class Exanpl eTest {

@ul e
public LocatorStarterRule locator = new LocatorStarterRule().w thAutoStart();

@ul e
publ i c & shConmmandRul e gf shRul e = new & shConmandRul e() ;

@Bef ore
public void before() throws Exception {
gf shRul e. connect AndVeri fy(l ocator);

}

@est
public void sinpleUsage() throws Exception {
/'l gfshRul e already connect, ready to execute some command and verify output.
of shRul e. execut eAndAssert That ("l i st nmenbers")
.statusl sCK()
. cont ai nsQut put (" bl ah, bl ah");

This example starts a server with IMXManager and then use the gfshRule to connect to the jmxManager of the server

@Cat egory(I ntegrationTest. cl ass)
public class Exanpl eTest {

@ul e

public ServerStarterRul e serverRule = new ServerStarterRul e().w t hJMXManager (). wi t hRegi on(Regi onShort cut.
REPLI CATE, "testRegion");

@ul e
publ i c &G shConmandRul e gf shRul e = new & shConmandRul e() ;

@Before
public void before() throws Exception {
gf shRul e. connect AndVeri fy(serverRul e. get JnxPort (), G shCommandRul e. Port Type.j nxManger);

}

@est
public void sinpleUsage() throws Exception {
/1 gf shRul e already connect, ready to execute sone comrand
String result = gfshRul e. execute("list nmenbers");
/1 exam ne the result and do sone assertions

In the previous two examples, the GfshShellConnectionRule is created with empty parameter, so you need to manually call the connect() method to
connect to a jmx manager in the @Before or in the body of the test. If you want to auto connect to a give jmx manager, you need to create the rule with a
PortProvider and PortType. Here is an example of it:

@Cat egory(I ntegrationTest. cl ass)
public class Exanpl eTest {

public LocatorStarterRule locator = new LocatorStarterRule().w thAutoStart();

publ i c &G shConmmandRul e gf shRul e = new Gf shCommandRul e(| ocat or:: get JnxPort, G shShell Connecti onRul e. Port Type.
j mxManger) ;

@rul e
public Rul eChain rul eChain = Rul eChai n. out er Rul e(l ocator).around(gfshRul e);

@est

public void sinpleUsage() throws Exception {
/1 gfshRul e already connect, ready to execute some command
gf shRul e. execut eAndAssert That ("l i st menbers"). statusl sOK();

}
}

0)

Related articles

Releasing Apache Geode

Running a Geode cluster in docker

Adding REST Cluster Management Operations

Creating a persistent cache service

Publishing Geode Metrics to External Monitoring Systems

https://cwiki.apache.org/confluence/display/GEODE/Releasing+Apache+Geode
https://cwiki.apache.org/confluence/display/GEODE/Running+a+Geode+cluster+in+docker
https://cwiki.apache.org/confluence/display/GEODE/Adding+REST+Cluster+Management+Operations
https://cwiki.apache.org/confluence/display/GEODE/Creating+a+persistent+cache+service
https://cwiki.apache.org/confluence/display/GEODE/Publishing+Geode+Metrics+to+External+Monitoring+Systems

	How to Write DUnit/Integration tests using geode's JUnit Rules

