KIP-179 - Change ReassignPartitionsCommand to use
AdminClient

Note this was initially erroneously assigned as KIP-178, which was already taken, and has been reassigned KIP-179.

Status
Motivation
Public Interfaces
Proposed Changes
© Summary of use cases
© kafka-reassign-partitions.sh and ReassignPartitionsCommand
© AdminClient: reassignPartitions()
© Network Protocol: ReassignPartitionsRequest and ReassignPartitionsResponse
© AdminClient: alterInterbrokerThrottledRates()
© Network API: AlterinterbrokerThrottledRatesRequest and AlterinterbrokerThrottledRatesResponse
o]
o]
o]
o]

AdminClient: alterInterbrokerThrottledReplicas()
Network API: AlterinterbrokerThrottledReplicasRequest and AlterinterbrokerThrottledReplicasResponse
On Controller Failover
On reassignment completion
© Throttle removal
® Compatibility, Deprecation, and Migration Plan
® Rejected Alternatives

Status

Current state: Withdrawn

Discussion thread: here (when initially misnumbered as KIP-178) and here (when assigned KIP-179)

JIRA: here KAFKA-5601 - Getting issue details... KAFKA-5561 - Getting issue details...

STATUS STATUS

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).e

Motivation

* The AdminClient API currently lacks any functionality for reassigning partitions: Users have to use the kaf ka- r eassi gn-partiti ons. sh tool (
Reassi gnPartiti onsConmand) which talks directly to ZooKeeper. This prevents the tool being used in deployments where only the brokers
are exposed to clients (i.e. where the zookeeper servers are intentionally not exposed). In addition, there is a general push to refactor/rewrite
Ireplace tools which need ZooKeeper access with equivalents which use the Adm nCl i ent API.

® ReassignPartitionsConmand currently has no proper facility to report progress of a reassignment; While - - ver i f y can be used periodically
to check whether the request assignments have been achieved the tool provides no means of knowing how quickly new replicas are catching up.
It would be useful if the tool could report progress better.

® ReassignPartitionsConmand, when used with a replication throttle, requires a - - ver i f y invocation when the reassignment has finished in
order to remove the throttle. So there exists the possibility that throttles are not removed after reassignment, with negative consequences for the
performance of the cluster. It would be better if throttles could be removed automatically.

Public Interfaces

The Admi nd i ent API will have new methods added (plus overloads for options):

® reassignPartitions(Map<TopicPartition, List<Integer>>)
® alterlnterbrokerThrottl edRates(Map<Integer, ThrottledRate> throttl| edRates)
® alterlnterbrokerThrottl edReplicas(Map<TopicPartition, Throttl edReplicas> replicas)

The options for r eassi gnPartiti ons() will support setting a throttle, and a flag for its automatic removal at the end of the reassignment. Likewise the
options for changing the throttled rates and replicas will include the ability to have the throttles automatically removed.

New network protocol APIs will be added to support these AdminClient APIs

® ReassignPartitionsRequest and Reassi gnPartitionsResponse

® AlterlnterbrokerThrottl edRat esRequest and Al t er| nt er broker Thrott| edRat esResponse

® AlterlnterbrokerThrottl edReplicasRequest and Al terl nterbrokerThrottl edRepl i casResponse
The options accepted by kaf ka- r eassi gn-partiti ons. sh command will change:

® --zookeeper will be deprecated, with a warning message

® anew --boot strap-server option will be added
® anew --progress action option will be added

http://mail-archives.apache.org/mod_mbox/kafka-dev/201707.mbox/%3cCAMd5YszudP+-8z5KTbFh6JscT2p4xFi1=VZWWX+5DccPxRyavw@mail.gmail.com%3e
http://mail-archives.apache.org/mod_mbox/kafka-dev/201707.mbox/%3CCAMd5Ysy3bY7Fq2xA3sk6BWW6%3D9TjT4%2Bya7mufRf6Wgre-S-UPg%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-5601
https://issues.apache.org/jira/browse/KAFKA-5601
https://issues.apache.org/jira/browse/KAFKA-5561

When run with - - boot st r ap- ser ver it will no longer be necessary to run kaf ka-r eassi gn-partitions.sh --verify toremove a throttle: This
will be done automatically.

Proposed Changes

Summary of use cases

Use case command AdminClient
Change replication factor kafka-reassign-partitions --execute --reassignment-json-file J reassi gnPartiti ons()
Change partition assignment kafka-reassign-partitions --execute --reassignment-json-file J reassi gnPartiti ons()

Change partition assignment with | kafka-reassign-partitions --execute --reassignment-json-file J | r eassi gnParti ti ons() // with throttle option
throttle --throttle R

Change throttled rate kafka-reassign-partitions --execute --reassignment-json-file J = alterinterbrokerThrottledRates()
--throttle R
alterInterbrokerThrottledReplicas()
/1 TODO how to do this conveniently?

Check progress of a kafka-reassign-partitions --progress --reassignment-json-file J descri beRepl i caLogDi rs() (see KIP-113)
reassignment

Check result and clear throttle kafka-reassign-partitions --verify --reassignment-json-file J reassi gnPartitions(validateOnly)

/I TODO checks none in progress, doesn't confirm
states match

kaf ka-reassi gn-partitions.shand ReassignPartitionsConmand
The - - zookeeper option will be retained and will:

1. Cause a deprecation warning to be printed to standard error. The message will say that the - - zookeeper option will be removed in a future
version and that - - boot st r ap- ser ver is the replacement option.
2. Perform the reassignment via ZooKeeper, as currently.

A new - - boot st r ap- ser ver option will be added and will:

1. Perform the reassignment via the AdminClient API (described below) using the given broker(s) as bootstrap brokers.
2. When used with - - execut e and - -t hr ot t | e, the throttle will be an auto-removed one.

Using both - - zookeeper and - - boot st r ap- ser ver in the same command will produce an error message and the tool will exit without doing the
intended operation.

It is anticipated that a future version of Kafka would remove support for the - - zookeeper option.

A new - - pr ogr ess action option will be added. This will only be supported when used with - - boot st r ap- ser ver . If used with - - zookeeper the
command will produce an error message and the tool will exit without doing the intended operation. - - pr ogr ess will report on the synchronisation of each
of the partitions and brokers in the reassignment given via the - - r eassi gnnent -j son-fi | e option

For example:

If the following coomand is used to start a reassignment

bi n/ kaf ka-reassi gn-partitions.sh --bootstrap-server |ocal host: 9878 \
--reassignnent-json-file expand-cluster-reassignment.json \
--execute

then the follow ng command will print the progress of

that reassignment, then exit imediately

bi n/ kaf ka-reassi gn-partitions.sh --bootstrap-server |ocal host: 9878 \
--reassignnent-json-file expand-cluster-reassignnment.json \
- -progress

That might print something like the following:

https://cwiki.apache.org/confluence/display/KAFKA/KIP-113%3A+Support+replicas+movement+between+log+directories#KIP-113:Supportreplicasmovementbetweenlogdirectories-AdminClient

Topi ¢ Partition Broker Status

my_topic 0 0 In sync

ny_topic 0 1 Behi nd: 10456 nessages behi nd

asdf 0 1 Unknown t opic

nmy_topic 42 1 Unknown partition

ny_topic 0 42 Unknown br oker

nmy_topic 1 0 Broker does not host this partition

The implementation of - - pr ogr ess will make use of the descri beRepl i caLogbi r s() method from KIP-113 to find the lag of the syncing replica.

Internally, the Reassi gnPar ti ti onsCommand will be refactored to support the above changes to the options. An interface will abstract the commands
currently issued directly to zookeeper.

There will be an implementation which makes the current calls to ZooKeeper, and another implementation which uses the Adm nd i ent API described
below.

In all other respects, the public API of Reassi gnParti ti onsComrand will not be changed.

AdminClient: reassignPartitions()
Notes:

® This APl is asynchronous in the sense that the client cannot assume that the request is complete (or the request was rejected) once they have
obtained the result for the topic from the Reassi gnPartiti onsResul t.

® The descri beReplicalLogDi rs() method from KIP-113 can be used to determine progress.

® AcalltoreassignPartitions() withthe val i dat eOnly option can be used to determine whether a reassignment is currently running, and
therefore whether the last reassignment has finished.

/**
* <p>Reassign the partitions given as the key of the given <code>assi gnments</code> to the corresponding
* |ist of brokers. The first broker in each list is the one which holds the "preferred replica". </ p>

* <p>l nter-broker reassignnent causes significant inter-broker traffic and can take a long tine
* in order to copy the replica data to brokers. The given options can be used i npose a quota on
* inter-broker traffic for the duration of the reassignnent so that client-broker traffic is not
* adversely affected. </ p>

* <h3>Preferred replica</h3>

* <p>When brokers are configured with <code>auto.| eader.rebal ance. enabl e=true</code>, the broker
* with the preferred replica will be elected | eader automatically.

* <code>kaf ka- preferred-replica-el ection.sh</code> provides a nanual trigger for this

* el ecti on when <code>aut o. | eader. rebal ance. enabl e=f al se</ code>. </ p>

* @aram assignnents The partition assignnents.
* @aramoptions The options to use when reassigning the partitions
* @eturn The ReassignPartitionsResult
*/
public abstract ReassignPartitionsResult reassignPartitions(Map<TopicPartition, List<Integer>> assignnents,
Reassi gnPartiti onsOptions options);

Where:

https://cwiki.apache.org/confluence/display/KAFKA/KIP-113%3A+Support+replicas+movement+between+log+directories#KIP-113:Supportreplicasmovementbetweenlogdirectories-AdminClient
https://cwiki.apache.org/confluence/display/KAFKA/KIP-113%3A+Support+replicas+movement+between+log+directories#KIP-113:Supportreplicasmovementbetweenlogdirectories-AdminClient

public class ReassignPartitionsOptions extends AbstractOptions<ReassignPartitionsOptions> {
/1 Note timeoutMs() inherited from Abstract Options

public bool ean validateOnly()

/*-k
* Validate the request only: Do not actually trigger replica reassignnment.
*/

public ReassignPartitionsOptions validateOnly(bool ean validateOnly)

public long throttle() {
return throttle;

}

* <p>Set the throttle rate and throttled replicas for the reassignnents.

* The given throttle is in bytes/second and should be at least 1 KB/s.

* Interbroker replication traffic will be throttled to approxinately the given val ue.
* Use Long. MAX_VALUE if the reassignnent should not be throttled.</p>

* <p>A positive throttle is equivalent to setting: </p>

*

* The | eader and follower throttled rates to the given value given by throttle.

* The | eader throttled replicas of each topic in the request to include the existing brokers having
* replicas of the partitions in the request.

* The follower throttled replicas of each topic in the request to include the new brokers

* for each partition in that topic.

*

* <p>The value of {@ink #autoRenobveThrottle()} will determ ne whether these
* throttles will be renoved automatically when the reassi gnment conpl etes. </ p>

* @ee Admindient#alterlnterbrokerThrottl edRate(int, |ong, |ong)
* @ee Admi ndient#alterlnterbrokerThrottl edReplicas(Mp)

*/

public ReassignPartitionsOptions throttle(long throttle) { ... }
public bool ean aut oRenoveThrottle() { ... }

/**

* True to automatically renove the throttle at the end of the current reassignnent.
*/
public ReassignPartitionsOptions autoRenpveThrottl e(bool ean autoRenoveThrottle) { ... }

}

public class ReassignPartitionsResult {
publ i c Map<Topi cPartition, KafkaFuture<Void>> val ues();
publ i c Kaf kaFuture<Voi d> all();

Network Protocol: ReassignPartitionsRequest and ReassignPartitionsResponse

A Reassi gnPartiti onsRequest initiates the movement of replicas between brokers, and is the basis of the Adm nCl i ent . reassi gnPartitions()
method

Notes:
® The request must be sent to the controller.

® The request requires the Al t er operation on the CLUSTER resource, since it can require significant inter-broker communication.
® The request will be subject to a policy, as described in KIP-201.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-201%3A+Rationalising+Policy+interfaces

Reassi
t opi

gnPartitionsRequest => [topic_reassignments] timeout validate_only throttle renpve_throttle
c_reassignnments => topic [partition_reassignnents]

topi c => STRI NG
partition_reassignments => partition_id [broker]

partition_id => I NT32
br oker => | NT32

timeout => | NT32

val i

date_only => BOCLEAN

throttle => | NT64
remove_throttl e => BOOLEAN

Where
Field Description
topic the name of a topic
partition_id apartition of that topic
br oker a broker id
ti meout The maximum time to await a response in ms.

val i dat e_only ' when true: validate the request, but don't actually reassign the partitions

Algorithm:

1. The controller validates the request against configured authz, policy etc.

2. The controller computes set of topics in the request, and writes this as JSON to the new / admi n/ thrott| ed_repl i cas_renoval znode

3. The controller then updates the existing | eader . replication.throttled.replicasandfollower.replication.throttl ed.
repl i cas properties of each topic config.

4. The controller computes the union of 1) the brokers currently hosting replicas of the topic partitions in the request 2) the brokers assigned to host
topic partitions in the request, and write this as JSON to the new / admi n/t hrott| ed_r at es_r enoval znode.

5. The controller then updates the existing | eader. replication.throttled.ratesandfol |l ower.replication.throttled.rates
properti es of each broker config.

6. The controller writes reassignment JSON to the / admi n/ r eassi gn_partiti ons znode

The intent behind this algorithm is that should the controller crash during the update, the reassignment won't have started and the throttles will be removed
on controller failover.

The brok

A Reass
which wil

Reassi

er will use the same algorithm for determing the values of the topic and broker configs as is currently used in the Reassi gnParti ti onsComuand

ignPartiti onsResponse describes which partitions in the request will be moved, and what was wrong with the request for those partitions
I not be moved.

gnPartitionsResponse => throttle_time_ms [reassign_partition_result]

throttle_time_ns => | NT32
reassign_partition_result => topic [partition_error]
topi c => STRI NG
partition_error => partition_id error_code error_nessage

partition_id => | NT32
error_code => | NT16
error_nessage => NULLABLE_STRI NG

Where
Field Description
throttle_time_ns durationin milliseconds for which the request was throttled
t opi c a topic name from the request
partition_id a partition id for that topic, from the request
error_code an error code for that topic partition
error_nessage more detailed information about any error for that topic

Anticipated errors:

CLUSTER_AUTHORI ZATI ON_FAI LED (31) Authorization failed

POLICY_VIOLATION(44) The request violated the configured policy

I NVALI D_TOPI C_EXCEPTI ON (17) If the topic doesn't exist

UNKNOWN_MEMBER | D (25) If any broker ids in the partition_reassignments included an unknown broker id

I NVALI D_REQUEST (42) If duplicate topics appeared in the request

PARTI TI ON_REASSI GNIVENT_| N_PROGRESS (new) If the reassignment cannot be started because a reassignment is currently running (i.e. the /
admi n/ reassi gn_partitions znode exists)

INVALID_THROTTLE (new) If the given throttle is <=0.

I NVALI D_REPLI CA_ASSI GNMENT (39) If a partition, replica or broker id in the partition_assignment doesn't exist or is incompatible with the
requested num_partitions and /or replication_factor. The error_message would contain further information.

* NONE (0) reassignment has started

AdminClient: alterinterbrokerThrottledRates()

* Change the rate at which interbroker replication is throttled, replacing existing throttled rates.
* For each broker in the given {@ode rates}, the {@ode | eaderRate} of the corresponding

* {@ode ThrottledRate} is the throttled rate when the broker is acting as |eader and

* the {@ode followerRate} is the throttled rate when the broker is acting as follower.

* For the throttled rates to take effect, the given broker nust also be present in the

* list of throttled replicas, which can be set by {@ink #alterlnterbrokerThrottl edReplicas()}.

* The throttle will be automatically renpved at the end of the current reassignnent,

* unl ess overridden in the given options.

* The current rates can be obtained from{@ink #describeConfigs(Collection)}.

* @aramrates Map frombroker id to the throttled rates for that broker.
* @aram options The options.
*/
public abstract AlterlnterbrokerThrottl edRateResult alterlnterbrokerThrottl edRate(
Map<l nteger, Throttl edRate> rates,
Al terlnterbrokerThrottl edRat eOpti ons options);

Where:

/**
* The throttled rate for interbroker replication on a particular broker.
*/
public class ThrottledRate {
public Throttl edRate(l ong | eaderRate, long followerRate) { ... }
/*-k
* The throttled rate when the broker is acting as | eader.
*/
long |l eaderRate() { ... }
/**
* The throttled rate when the broker is acting as follower.
*/
long followerRate() { ... }
}

public class AlterlnterbrokerThrottl edRateOpti ons extends Abstract Opti ons<AlterlnterbrokerThrottl edRateOpti ons>
{

public bool ean aut oRenoveThrottle() { ... }

| **

* True to automatically renove the throttle at the end of the current reassignnent.
*/
public AlterlnterbrokerThrottl| edRateOptions aut oRenpveThrottl e(bool ean aut oRenoveThrottle) { ... }
}

public class AlterlnterbrokerThrottl edRateResult {
/| package-access ctor

publ i c Map<lnteger, KafkaFuture<Void>> values() { ... }

public KafkaFuture<Void> all() { ... }

Network API: AlterinterbrokerThrottledRatesRequest and AlterinterbrokerThrottledRatesResponse

Al terlnterbrokerThrottl edRat esRequest => [broker_throttles] renove_throttle timeout validate_only
broker_throttles => broker_id | eader_rate follower_rate
broker _id => | NT32
| eader _rate => | NT64
follower_rate => | NT64
timeout => | NT32
val i date_only => BOOLEAN
remove_throttl e => BOOLEAN

Algorithm:

1. The controller validates the brokers and rates in the request and that the principal has Al t er operation on the CLUSTER resource.

2. The controller gets the current value of the /admin/throttled_rates_removal znode, forms the union of those brokers with those in the request and
updates the /admin/throttled_rates_removal znode with JSON representation of this union

3. The controller then subtracts the brokers in the request from the current brokers and removes the leader.replication.throttled.rates and follower.
replication.throttled.rates properties from each broker config

4. The controller then, for each broker in the request, adds the leader.replication.throttled.rates and follower.replication.throttled.rates properties to
each broker config.

5. The controller then updates /admin/throttled_rates_removal znode with JSON representation of brokers in the request.

The intent behind this algorithm is that should the controller crash during the update, throttles will still be removed on completion of reassignment.

Al terlnterbrokerThrottl| edRat esResponse => [broker_error]
broker _error => broker_id error_code error_nessgae
broker _id => | NT32
error_code => | NT16
error_nessage => NULLABLE_STRI NG

Anticipated Errors:

NOT_CONTROLLER (41) if the request was sent to a broker that wasn't the controller.

CLUSTER_AUTHORI ZATI ON_FAI LED (31) Authorization failed

INVALID_THROTTLE (new) if the throttled rate is <= 0.

UNKNOMN_MEMBER_| D(25) if the broker id in the request is not a broker in the cluster

AdminClient: alterinterbrokerThrottledReplicas()

/**

* Set the partitions and brokers subject to the

* {@inkplain #alterlnterbrokerThrottl edRat e(Map)

* interbroker throttled rate}.

* The brokers specified as the {@ink Throttl edReplicas#l eaders()} corresponding to a

* topic partition given in {@ode replicas} will be subject to the |leader throttled rate
* when acting as the | eader for that partition.

* The brokers specified as the {@ink Throttl edReplicas#followers()} corresponding to a

* topic partition given in {@ode repicas} will be subject to the follower throttled rate
* when acting as the follower for that partition.

* The throttle will be automatically renmoved at the end of the current reassignnment,
* unl ess overridden in the given options.

* The current throttled replicas can be obtained via {@ink #describeConfigs(Collection)} with a
* ConfigResource with type {@ink ConfigResource. Type#TOPI C TOPIC} and narme "l eader.replication.throttled.

replicas"
* or "follower.replication.throttled.replicas".
*/

public abstract AlterlnterbrokerThrottl edReplicasResult alterlnterbrokerThrottledReplicas(
Map<Topi cPartition, ThrottledReplicas> replicas,
Al terlnterbrokerThrottl edReplicasOptions options);

Where:

public class Throttl edReplicas {

public ThrottledReplicas(Collection<lnteger> |eaders, Collection<Integer> followers) { ... }

/**

* The brokers which should be throttled when acting as |leader. A null value indicates all brokers in the
cluster.

*/

public Collection<lnteger> |eaders() { .. }

/**

* The brokers which should be throttled when acting as follower. A null value indicates all brokers in the
cluster.

*/

public Collection<Integer> followers() { ... }

}

public class AlterlnterbrokerThrottl edReplicasOptions extends
Abstract Opti ons<Al terlnterbrokerThrottl edReplicasOptions> {

public bool ean aut oRenmoveThrottle() { ... }

/**
* True to automatically renmove the throttle at the end of the current reassignnment.
*/
public AlterlnterbrokerThrottl edReplicasOptions autoRenoveThrottl e(bool ean aut oRenmoveThrottle) { ... }
}

public class AlterlnterbrokerThrottl edReplicasResult {
/| package-access ctor
publ i c Map<TopicPartition, KafkaFuture<Void>> values() { ... }
public KafkaFuture<void> all() { ... }

Network API: AlterinterbrokerThrottledReplicasRequest and
AlterinterbrokerThrottledReplicasResponse

Al terlnterbrokerThrottl| edRat esRequest => [topic_throttles] renove_throttle tineout validate_only
topic_throttles => topic [partition_throttles]
topi c => STRI NG
partition_throttles => partition_id [broker_id]
partition_id => | NT32
broker _id => | NT32
timeout => | NT32
val i date_only => BOOLEAN
remove_t hrottl e => BOOLEAN

Algorithm:
1. The controller validates the partitions and brokers in the request and that the principal has Al t er operation on the CLUSTER resource.

2. The controller gets the current value of the / admi n/ throt t| ed_repl i cas_r enpval znode, forms the union of those topics with those in the
request and updates the / adm n/throttl ed_rat es_renoval znode with JSON representation of this union

3. The controller then subtracts the topics in the request from the current topics and removes the | eader . replication.throttl ed. replicas
andfollower.replication.throttl ed.replicas properties from each topic config

4.

The controller then, for each topic in the request, adds the | eader . replication.throttled.rates andfol | ower.replication.
throttl ed. rates properties to each topic config.
5. The controller then updates / admi n/t hrottl ed_repl i cas_r enpval znode with JSON representation of topics in the request.

The intent behind this algorithm is that should the controller crash during the update, throttles will still be removed on completion of reassignment.

Al terlnterbrokerThrottl edRepl i casResponse => [topic_errors]
topic_errors => topic [partition_errors]
topi c => STRI NG
partition_errors => partition_id error_code error_nessgae
partition_id => I NT32
error_code => | NT16
error_nessage => NULLABLE_STRI NG

Anticipated errors:

NOT_CONTROLLER (41) if the request was sent to a broker that wasn't the controller.

CLUSTER_AUTHORI ZATI ON_FAI LED (31) Authorization failed

UNKNOWN_TOPIC_OR_PARTITION (3) if a partition in the request is not known in the cluster.
UNKNOMN_MEMBER | D(25) if the broker id in the request is not a broker in the cluster

On Controller Failover
The algorithms presented above, using the new znodes, are constructed so that should the controller fail, on election of a new controller ZooKeeper is not
left in an inconsistent state where throttles which should be removed automatically are not removed at the end of the reassignment. The recovery
algorithm is as follows:

1. Ifthe /admi n/ reassi gn_partitions znode exists we assume a reassignment is on-going and do nothing.

2. Otherwise, if the / admi n/ reassi gn_partiti ons znode does not exists, we proceed to remove the throttles, as detailed in "Throttle removal"
section below.

On reassighment completion
When reassignment is complete:

1. The/adm n/reassi gn_partitions znode gets removed.
2. We remove the throttles, as detailed in "Throttle removal" section below.

Throttle removal
The algorithm for removing the throttled replicas is:

1. If/admi n/renmove_throttl ed_replicas is set:
a. For each of the topics listed in that znode:

i. Remove the (1 eader|foll ower).replication.throttled.replicas properties for that topic config.
b. Remove the / admi n/renove_throttl ed_replicas znode

The symmetric algorithm is used for / adm n/ r enove_t hrott| ed_r at es, only with broker configs.

Compatibility, Deprecation, and Migration Plan

Existing users of the kaf ka- r eassi gn- partitions. sh will receive a deprecation warning when they use the - - zookeeper option. The option will be
removed in a future version of Kafka. If this KIP is introduced in version 1.0.0 the removal could happen in 2.0.0.

Implementing Admi nC i ent. al t er Confi gs() for (dynamic) broker configs was considered as a way of implementing throttle management but this
would not support the auto removal feature.

Not supporting passing a throttle in the AdminClient.reassignPartitions() (and just using the APIs for altering throttles) was considered, but:
® Being able to specify a throttle at the same time at starting the reassignment is very convenient.

® Race conditions are possible if the APIs requires throttles set up before reassignment starts. What if reassignPartitions() doesn't get called, or
none of the partitions in the call can be be reassigned?

Rejected Alternatives

If there are alternative ways of accomplishing the same thing, what were they? The purpose of this section is to motivate why the design is the way it is
and not some other way.

One alternative is to do nothing: Let the ReassignPartitionsCommand continue to communicate with ZooKeeper directly.

Another alternative is to do exactly this KIP, but without the deprecation of - - zookeeper . That would have a higher long term maintenance burden, and
would prevent any future plans to, for example, provide alternative cluster technologies than ZooKeeper.

An al t er Topi cs() AdminClient API, mirroring the existing cr eat eTopi cs() API, was considered, but:

® Some callsto al t er Topi cs() (such as increasing the partition count) would have been synchronous, while others (such as moving replicas
between brokers) would have been long running and thus asynchronous. This made for an API which synchronousness depended on the

arguments.
® createTopi cs() allows to specify topic configs, whereas al t er Confi gs() is already provided to change topic configs, so it wasn't an exact

mirror

Just providing r eassi gnPar ti ti ons() was considered, with changes to partition count inferred from partitions present in the assi gnnent s argument.
This would require the caller to provide an assignment of partitions to brokers, whereas currently it's possible to increase the partition count without
specifying an assignment. It also suffered from the synchronous/asynchronous API problem.

Similarly a al t er Repl i cati onFact or s() method, separate from r eassi gnParti ti ons() was considered, but both require a partition to brokers
assignment, and both are implemented in the same way (by writing to the / admi n/ r eassi gn_parti ti ons znode), so there didn't seem much point in
making an API which distinguished them.

Algorithms making use of the ZooKeeper "multi" feature for atomic update of multiple znodes were considered. It wasn't clear that these would be better
than the algorithms presented above.

	KIP-179 - Change ReassignPartitionsCommand to use AdminClient

