
1.
2.

KIP-201: Rationalising Policy interfaces

Status
Motivation

Problem 1 - Topic config is governed by both CreateTopicPolicy and AlterConfigPolicy
Problem 2 - Creating more partitions is not currently covered by any policy
Problem 3 - CreateTopicPolicy can govern partition assignment, but there is no policy for reassignment
Problem 4 - There is no policy for topic deletion or record deletion
Problem 5 - The existing CreateTopicPolicy doesn't have enough information

Public Interfaces
Proposed Changes

Add TopicManagementPolicy and supporting interfaces
Deprecate existing policies
Add new versions of DeleteTopicsRequest and DeleteTopicsResponse
Add new versions of DeleteRecordsRequest and DeleteRecordsResponse

Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status
Current state: Under Discussion

Discussion thread: here

JIRA: https://issues.apache.org/jira/browse/KAFKA-5693

Please keep the discussion on the mailing list rather than commenting on the wiki (wiki discussions get unwieldy fast).

Motivation
Kafka already has user configurable policies which can be used by a cluster administrator to limit how the cluster can be modified by non-administrator
users (for example by using the AdminClient API):

CreateTopicPolicy can prevent a topic being created based on topic creation parameters (name, number of partitions & replication factor or
replica assignments, topic configs)
AlterConfigPolicy can prevent a change to topic config (or, in theory, broker config, but it's current not possible to change broker configs via
the AdminClient API)

The existing policies were added in and and at that time there was an expectation that the AdminClient would gain a single API for topic KIP-108 KIP-133
modification. However, discussion about KIP-179, and work on KIP-195 shows that the AdminClient will end up with multiple APIs for modifying topics in
different ways. Consequently there isn't and won't be a direct mapping between operations and policies.

Adding new policies ad-hoc is likely to lead to a poor result because:

Users need to know about a policy to implement it. Its easier to know about 1 thing than half a dozen.
The more policies there are the more places they need to be configured.

Problem 1 - Topic config is governed by both CreateTopicPolicy and AlterConfigPolicy

Currently the topic config is passed to the , but if a topic config is later modified the is applied. If an CreateTopicPolicy AlterConfigPolicy
administrator wants to use the topic config in their policy decisions they have to implement this logic in two places (or at least multiply inherit both policy
implementations and configure the same class name for each policy). If the policy decision depends on both the topic config and another aspect of the
topic the interface doesn't provide the necessary information.AlterConfigPolicy

Problem 2 - Creating more partitions is not currently covered by policyany

Changing the number of partitions in a topic was the subject of and is just one kind of topic modification. Consider two example use cases:KIP-195

It shouldn't be possible to create a topic, but then modify it so that it no longer conforms to the .CreateTopicPolicy
An administrator who wants to prevent increasing the number of partitions entirely for topics with keys, because of the effect on partitioning.

To solve 1, we could simply apply the existing to modifications, butTopicCreationPolicy

this would obscure whether a particular invocation of the policy was for a topic creation or modification (the second bullet)
we would be left with a misleadingly named policy

So there needs to be a policy for specifically for a topic. But it is confusing and error-prone if there are policy classes for creation and modifying different
modification (the and a new , say): It would be easy for the code implementing a user's policies to get out of CreateTopicPolicy ModifyTopicPolicy
sync if it needs to be maintained in two places. It would also be easy to configure one policy but not the other.

Multiply inheriting separate the and a new is a solution, but still requires multiple configuration keys.CreateTopicPolicy ModifyTopicPolicy

http://mail-archives.apache.org/mod_mbox/kafka-dev/201709.mbox/%3CCAMd5Yszpo4nAwY%3DkkcKXv956LutUdr7ZCzrWpH3TnktFiR1Jtw%40mail.gmail.com%3E
https://issues.apache.org/jira/browse/KAFKA-5693
https://cwiki.apache.org/confluence/display/KAFKA/KIP-108%3A+Create+Topic+Policy
https://cwiki.apache.org/confluence/display/KAFKA/KIP-133%3A+Describe+and+Alter+Configs+Admin+APIs#KIP-133:DescribeandAlterConfigsAdminAPIs-AlterConfigs
https://cwiki.apache.org/confluence/display/KAFKA/KIP-195%3A+AdminClient.createPartitions

It would be better if there were a policy interface which is applied to both topic creation and modification in a more uniform way.single

Problem 3 - CreateTopicPolicy can govern partition assignment, but there is no policy for
reassignment

Reassigning replicas is another kind of topic modification and the subject of . By similar reasoning to example 2 it, too, should be covered by the KIP-179
same policy. This would require that the same request metadata could describe both kinds of modification satisfactorily.

Problem 4 - There is no policy for topic deletion or record deletion

KIP-170 proposes a policy for topic deletion (see that KIP for the motivation behind this) and proposes to add an AdminClient API for the existing KIP-204
network protocol for deleting records from the partitions of a topic.

While deleting records from a topic is not the same as deleting the topic itself, both result in records being deleted, and it is those records which have value
to the company or organisation operating the cluster. Thus if topic deletion is deserving of a policy, it should also be possible to apply a similar policy to
record deletion, otherwise a user might be able to apply business rules to on the one kind of deletion, but not the other. If there were a separate TopicDel

 and we have the similar problem as described above for separate topic creation and modification policies: It's etePolicy MessageDeletePolicy
unnecessarily difficult and tedious to keep the policies consistent and correctly configured.

Problem 5 - The existing doesn't have enough informationCreateTopicPolicy

As noted in , for some use cases, the existing doesn't get passed enough information for the operators desired rules to be KIP-170 CreateTopicPolicy
enfored. For example, while providing Kafka-as-a-Service there is the need to ensure that the new topic require more resources than the cluster can
support (e.g. number of partitions won't exceed some maximum).

Public Interfaces
A new policy interface will be added, TopicManagementPolicy will apply to topic creation, topic alteration, topic deletion and message deletion. It will be
configured by the new config.topic.management.policy.class.name

The existing policy interfaces and will be deprecated, but will continue to be applied where they are CreateTopicPolicy AlterConfigPolicy
currently applied until they are removed.

New versions of existing network protocol and will be added, to add a validate_only flag.DeleteTopicsRequest DeleteRecordsRequest

New versions of existing network protocol and will be added to include an error message.DeleteTopicsResponse DeleteRecordsResponse

Proposed Changes

Add TopicManagementPolicy and supporting interfaces

The following policy interfaces and supporting classes will be added

/**
 * Represents the state of a topic.
 */
interface TopicState {
 /**
 * The number of partitions of the topic.
 */
 int numPartitions();

 /**
 * The replication factor of the topic. More precisely, the number of assigned replicas for partition 0.
 * // TODO what about during reassignment
 */
 short replicationFactor();

 /**
 * A map of the replica assignments of the topic, with partition ids as keys and
 * the assigned brokers as the corresponding values.
 * // TODO what about during reassignment
 */
 Map<Integer, List<Integer>> replicasAssignments();

https://cwiki.apache.org/confluence/display/KAFKA/KIP-179+-+Change+ReassignPartitionsCommand+to+use+AdminClient
https://cwiki.apache.org/confluence/display/KAFKA/KIP-170%3A+Enhanced+TopicCreatePolicy+and+introduction+of+TopicDeletePolicy
https://cwiki.apache.org/confluence/display/KAFKA/KIP-204+%3A+adding+records+deletion+operation+to+the+new+Admin+Client+API
https://cwiki.apache.org/confluence/display/KAFKA/KIP-170%3A+Enhanced+TopicCreatePolicy+and+introduction+of+TopicDeletePolicy

 /**
 * The topic config.
 */
 Map<String,String> configs();

 /**
 * Returns whether the topic is marked for deletion.
 */
 boolean markedForDeletion();

 /**
 * Returns whether the topic is an internal topic.
 */
 boolean internal();

}

/**
 * Represents the requested state of a topic.
 */
interface RequestedTopicState extends TopicState {
 /**
 * True if the {@link TopicState#replicasAssignments()}
 * in this request we generated by the broker, false if
 * they were explicitly requested by the client.
 */
 boolean generatedReplicaAssignments();

 /**
 * The topic config as it will be if the request is successful.
 * This is effectively the same as the value of {@code configs}
 * after the following computation:
 * <pre><code>
 * Map<String, String> configs = currentState.configs();
 * configs.putAll(requestedState.requestedConfigs();
 * </code></pre>
 */
 @Override
 Map<String,String> configs();

 /**
 * The topic configs present in the request.
 */
 Map<String,String> requestedConfigs();
}

/** The current state of the topics in the cluster, before the request takes effect. */
interface ClusterState {
 /**
 * Returns the current state of the given topic, or null if the topic does not exist.
 */
 TopicState topicState(String topicName);

 /**
 * Returns all the topics in the cluster, including internal topics if
 * {@code includeInternal} is true, and including those marked for deletion
 * if {@code includeMarkedForDeletion} is true.
 */
 Set<String> topics(boolean includeInternal, boolean includeMarkedForDeletion);

 /**
 * The number of brokers in the cluster.
 */
 int clusterSize();

 /**
 * Returns the current state of the broker in which the method is called.
 */
 BrokerState brokerState();

}

/**
 * A policy that is enforced on topic creation, alteration and deletion,
 * and for the deletion of messages from a topic.
 *
 * An implementation of this policy can be configured on a broker via the
 * {@code topic.management.policy.class.name} broker config.
 * When this is configured the named class will be instantiated reflectively
 * using its nullary constructor and will then pass the broker configs to
 * its <code>configure()</code> method. During broker shutdown, the
 * <code>close()</code> method will be invoked so that resources can be
 * released (if necessary).
 *
 */
interface TopicManagementPolicy extends Configurable, AutoCloseable {

 static interface AbstractRequestMetadata {

 /**
 * The topic the action is being performed upon.
 */
 public String topic();

 /**
 * The authenticated principal making the request.
 */
 public KafkaPrincipal principal();
 }

 static interface CreateTopicRequest extends AbstractRequestMetadata {
 /**
 * The requested state of the topic to be created.
 */
 public RequestedTopicState requestedState();
 }

 /**
 * Validate the given request to create a topic
 * and throw a <code>PolicyViolationException</code> with a suitable error
 * message if the request does not satisfy this policy.
 *
 * Clients will receive the POLICY_VIOLATION error code along with the exception's message.
 * Note that validation failure only affects the relevant topic,
 * other topics in the request will still be processed.
 *
 * @param requestMetadata the request parameters for the provided topic.
 * @param clusterState the current state of the cluster
 * @throws PolicyViolationException if the request parameters do not satisfy this policy.
 */
 void validateCreateTopic(CreateTopicRequest requestMetadata, ClusterState clusterState) throws
PolicyViolationException;

 static interface AlterTopicRequest extends AbstractRequestMetadata {
 /**
 * The state the topic will have after the alteration.
 */
 public RequestedTopicState requestedState();
 }

 /**
 * Validate the given request to alter an existing topic
 * and throw a <code>PolicyViolationException</code> with a suitable error
 * message if the request does not satisfy this policy.
 *
 * The given {@code clusterState} can be used to discover the current state of the topic to be modified.
 *
 * Clients will receive the POLICY_VIOLATION error code along with the exception's message.
 * Note that validation failure only affects the relevant topic,
 * other topics in the request will still be processed.
 *

 * @param requestMetadata the request parameters for the provided topic.
 * @param clusterState the current state of the cluster
 * @throws PolicyViolationException if the request parameters do not satisfy this policy.
 */
 void validateAlterTopic(AlterTopicRequest requestMetadata, ClusterState clusterState) throws
PolicyViolationException;

 /**
 * Parameters for a request to delete the given topic.
 */
 static interface DeleteTopicRequest extends AbstractRequestMetadata {
 }

 /**
 * Validate the given request to delete a topic
 * and throw a <code>PolicyViolationException</code> with a suitable error
 * message if the request does not satisfy this policy.
 *
 * The given {@code clusterState} can be used to discover the current state of the topic to be deleted.
 *
 * Clients will receive the POLICY_VIOLATION error code along with the exception's message.
 * Note that validation failure only affects the relevant topic,
 * other topics in the request will still be processed.
 *
 * @param requestMetadata the request parameters for the provided topic.
 * @param clusterState the current state of the cluster
 * @throws PolicyViolationException if the request parameters do not satisfy this policy.
 */
 void validateDeleteTopic(DeleteTopicRequest requestMetadata, ClusterState clusterState) throws
PolicyViolationException;

 /**
 * Parameters for a request to delete records from the topic.
 */
 static interface DeleteRecordsRequest extends AbstractRequestMetadata {

 /**
 * Returns a map of topic partitions and the corresponding offset of the last message
 * to be retained. Messages before this offset will be deleted.
 * Partitions which won't have messages deleted won't be present in the map.
 */
 Map<Integer, Long> deletedMessageOffsets();
 }

 /**
 * Validate the given request to delete records from a topic
 * and throw a <code>PolicyViolationException</code> with a suitable error
 * message if the request does not satisfy this policy.
 *
 * The given {@code clusterState} can be used to discover the current state of the topic to have records
deleted.
 *
 * Clients will receive the POLICY_VIOLATION error code along with the exception's message.
 * Note that validation failure only affects the relevant topic,
 * other topics in the request will still be processed.
 *
 * @param requestMetadata the request parameters for the provided topic.
 * @param clusterState the current state of the cluster
 * @throws PolicyViolationException if the request parameters do not satisfy this policy.
 */
 void validateDeleteRecords(DeleteRecordsRequest requestMetadata, ClusterState clusterState) throws
PolicyViolationException;
}

/**
 * Represents the state of a broker
 */
interface BrokerState {

 /**

 * The broker config.
 */
 Map<String,String> configs();
}

interface RequestedBrokerState extends BrokerState {

 /**
 * The topic config as it will be if the request is successful.
 * This is effectively the same as the value of {@code configs}
 * after the following computation:
 * <pre><code>
 * Map<String, String> configs = currentState.configs();
 * configs.putAll(requestedState.requestedConfigs();
 * </code></pre>
 */
 @Override
 Map<String,String> configs();

 /**
 * The broker configs present in the request.
 */
 Map<String,String> requestedConfigs();
}

/**
 * A policy that is enforced on broker alteration.
 *
 * An implementation of this policy can be configured on a broker via the
 * {@code broker.management.policy.class.name} broker config.
 * When this is configured the named class will be instantiated reflectively
 * using its nullary constructor and will then pass the broker configs to
 * its <code>configure()</code> method. During broker shutdown, the
 * <code>close()</code> method will be invoked so that resources can be
 * released (if necessary).
 *
 * TODO: Fully define the lifecycle since the policy is configured by broker config which changes, so a means
of reconfiguration is required.
 */
interface BrokerManagementPolicy extends Configurable, AutoCloseable {
 static interface AbstractRequestMetadata {

 /**
 * The id of the broker the action is being performed upon.
 * This is always the same as the id of the broker in which the
 * broker management policy is executing.
 */
 public int brokerId();

 /**
 * The principal making the request.
 */
 public KafkaPrincipal principal();
 }

 static interface AlterBrokerRequest extends AbstractRequestMetadata {
 /**
 * The requested state of the broker to be altered.
 */
 public RequestedBrokerState requestedState();
 }

 /**
 * Validate the given request to alter a broker
 * and throw a <code>PolicyViolationException</code> with a suitable error
 * message if the request does not satisfy this policy.
 *
 * Clients will receive the POLICY_VIOLATION error code along with the exception's message.

 * Note that validation failure only affects the relevant broker,
 * other topics in the request will still be processed.
 *
 * @param requestMetadata the request parameters for the provided broker.
 * @param clusterState the current state of the cluster
 * @throws PolicyViolationException if the request parameters do not satisfy this policy.
 */
 void validateAlterBroker(AlterBrokerRequest requestMetadata,
 ClusterState clusterState)
 throws PolicyViolationException;
}

The will be applied:TopicManagementPolicy

On topic creation, i.e. when processing a CreateTopicsRequest
On topic modification

Change in topic config, ie. when processing , for topic configs (this change done as part of this KIP).AlterConfigsRequest
Adding partitions to topics, i.e. when processing a (see KIP-195, but this change done as part of this KIP)CreatePartitionsRequest
Reassigning partitions to brokers, and/or changing the replication factor when processing (as part of ReassignPartitionsRequest
KIP-179)

On topic deletion, i.e. when processing a (this change done as part of this KIP).DeleteTopicsRequest
On message deletion, i.e. when processing a (this change done as part of this KIP).DeleteRecordsRequest

The will be applied:BrokerManagementPolicy

On broker startup
This is to ensure that brokers start in a valid state; without this it would be possible for a later alter broker request to be denied even
though the request itself was not the cause of the policy violation.

On broker modification, ie. when processing a for broker configs.AlterConfigsRequest

Deprecate existing policies

The existing and will be deprecated, but will continue to be applied when they are configured.CreateTopicPolicy AlterConfigPolicy

Using or will result in an deprecation warning in the broker logs.create.topic.policy.class.name alter.config.policy.class.name

It will be a configuration-time error if both and are used at the create.topic.policy.class.name topic.management.policy.class.name
same time, or both and are used at the same time.alter.config.policy.class.name topic. .policy.class.namemanagement

Internally, an adapter implementation of will be used when and are configured, TopicManagementPolicy CreateTopicPolicy AlterConfigPolicy
so policy use sites won't be unnecessarily complicated.

If, in the future, / is changed to support changing broker configs a separate policy interface AdminClient.alterConfigs() AlterConfigsRequest
can be applied to such changes.

Add new versions of and DeleteTopicsRequest DeleteTopicsResponse

The protocol have a 3rd version added (version 2). The will get a flag. When this is set the DELETE_TOPICS DeleteTopicsRequest validate_only
request will be validated for correctness, including that it satisfies the method, but the topic TopicManagementPolicy.validateDeleteTopic()
won't actually be deleted.

DeleteTopics Request (Version: 2) => [topics] timeout validate_only
 topics => STRING
 timeout => INT32
 validate_only => BOOLEAN

The will get the ability to include error messages in addition to error codes:DeleteTopicsResponse

DeleteTopics Response (Version: 2) => throttle_time_ms [topic_error_codes]
 throttle_time_ms => INT32
 topic_error_codes => topic error_code error_message
 topic => STRING
 error_code => INT16
 error_message => NULLABLE_STRING

Old versions of the will use a UNEXPECTED_SERVER_ERROR instead of POLICY_VIOLATION so as to not DeleteTopicsResponse error_code
break clients.

The documentation for will be updated mention the possibility of from the AdminClient.deleteTopics() PolicyViolationException DeleteTop
 methods.icsResult

Add new versions of and DeleteRecordsRequest DeleteRecordsResponse

The protocol have a 2nd version added (version 1). The will get a flag. When this is set DELETE_RECORDS DeleteRecordsRequest validate_only
the request will be validated for correctness, including that it satisfies the method, but no TopicManagementPolicy.validateDeleteRecords()
records will be deleted.

DeleteRecords Request (Version: 1) => [topics] timeout validate_only
 topics => topic [partitions]
 topic => STRING
 partitions => partition offset
 partition => INT32
 offset => INT64
 timeout => INT32
 validate_only => BOOLEAN

The will get the ability to include error messages in addition to error codes:DeleteRecordsResponse

DeleteRecords Response (Version: 0) => throttle_time_ms [topics]
 throttle_time_ms => INT32
 topics => topic [partitions]
 topic => STRING
 partitions => partition low_watermark error_code error_message
 partition => INT32
 low_watermark => INT64
 error_code => INT16
 error_message => NULLABLE_STRING

Existing versions of the will use a UNEXPECTED_SERVER_ERROR instead of POLICY_VIOLATION so as to DeleteRecordsResponse error_code
not break clients.

The documentation for (being added by KIP-204) will be updated mention the possibility of AdminClient.deleteRecords() PolicyViolationExcep
 from the methods.tion DeleteRecordsResult

Compatibility, Deprecation, and Migration Plan
Existing users will have to reimplement their policies in terms of the new interface, and reconfigure their brokers accordingly. TopicManagementPolicy
Since the contains a superset of the existing information used by the deprecated policies such reimplementation should be TopicManagementPolicy
trivial.

The deprecated policy interfaces and configuration keys will be removed in a future Kafka version. If this KIP is accepted for Kafka 1.1.0 this removal could
happen in Kafka 2.0.0 or a later major release.

This KIP proposes to retrospectively apply policies to two APIs (delete topics and delete records) exposed via the network protocol. Existing clients might
not be expecting a POLICY_VIOLATION error code in the responses. To mitigate this, only the new version of these network protocols will actually return
POLICY_VIOLATION. If a client is using an old version of either of these protocols, the policy violation will be returned an
UNEXPECTED_SERVER_ERROR, and a message logged to explain that the error is in fact a policy violation.

Rejected Alternatives
The objectives of this KIP could be achieved without deprecating the existing policy classes, but that:

incurs ongoing maintenance and testing costs on the project for not overall benefit
If two policies were in force it would be more confusing to users when a request was rejected (which policy rejected it?) possibly exacerbated if
users didn't know two policies were in force.
If it were possible to have two policies in force administrators have not been relieved of the burden of maintaining two policies in sync.

Having separate policy interfaces was considered, but rejected because there would need to be several of them, making it harder for people to discover,
understand, implement and configure policies. It would also be easy for users to miss if a new policy interface was added.

Having separate policy interfaces for creation/modification and deletion and retaining the existing single-method-per-policy-interface design was
considered, but rejected because it was a half way house between having multiple policies and having a single policy.

	KIP-201: Rationalising Policy interfaces

