
Secure ZooKeeper Client in Apache Knox
Introduction / Motivation
Apache Knox 0.14.0 introduces the ability to manage topology deployments across multiple gateway instances by modifying znode contents in Apache
ZooKeeper.

Due to the sensitive nature of some of the content, and the potential for an untrusted actor to intentionally provide malicious configuration, it is highly
recommended that the ZooKeeper node(s) require authentication, and that the znodes used by Knox have appropriate ACLs applied.

This article will describe the minimal configuration necessary to accomplish this, and demonstrate the application of digest-backed(for simplicity) SASL
authentication.

SASL Authentication
SASL is a framework for applications to add authentication support by way of a variety of authentication mechanisms. ZooKeeper employs SASL.
The Knox remote configuration registry facility currently supports the Kerberos and DIGEST-MD5 mechanisms for ZooKeeper interactions.

The ZooKeeper server and client use the Java Authentication and Authorization Service (JAAS) and the associated configuration to apply authentication.

RemoteConfigurationRegistryClient Configuration
Knox clients for remote configuration registries (e.g., ZooKeeper) are configured in ./config/gateway-site.xml{GATEWAY_HOME}

Each client configuration is a single property, the name of which is prefixed with , and suffixed by the client identifier. gateway.remote.config.registry.
The value of such a property, is a registry-type-specific set of semicolon-delimited properties for that client, including the type of registry with which it will
interact.

This configuration is the means by which the supported authentication mechanisms can be specified for each client.

N.B., Due to a limitation of the ZooKeeper client, there can only be a single secure ZooKeeper client configured for Knox at any given time. This will be
resolved subsequent to the release of ZooKeeper 3.6.0, such that multiple ZooKeeper clients with distinct authentication configuration can be defined.

The configuration for a single-node ZooKeeper, without any client authentication required, looks similar to this:

<property>
 <name>gateway.remote.config.registry.sandbox-zookeeper-client</name>
 <value>type=ZooKeeper;address=localhost:2181</value>
 <description>ZooKeeper configuration registry client details.</description>
</property>

This article will be limited to a single-node ZooKeeper for these reasons:

The ZooKeeper available in the HDP Sandbox is a single-node.
The focus of this article is on the secure client configuration, and ensemble-level security configuration is beyond that scope.

For interactions with a ZooKeeper that requires client authentication, some additional properties need to be added to the client configuration.

This is the DIGEST-MD5 configuration:

<property>
 <name>gateway.remote.config.registry.sandbox-zookeeper-client</name>
 <value>type=ZooKeeper;address=localhost:2181;authType=Digest;principal=myzkuser;credentialAlias=myzkpass<
/value>
 <description>ZooKeeper configuration registry client details.</description>
</property>

1.

2.
a.

b.

c.

d.

3.
a.

b.

c.

4.

You'll notice that the following have been added to the property value:

authType The value is what specifies that the client will attempt to authenticate via the DIGEST-MD5 mechanism.Digest
principal The identity, as which the client is requesting to be authenticated.
credentialAlias A for the password associated with the principal.gateway alias

More details about these client configurations are available in the .User Guide

ZNode ACLs
By default, znodes have effectively no restrictions (i.e., world:anyone:cdrwa) on their ability to be modified. This poses a problem for an application like
Knox, which needs to trust the content of one or more znodes. If anyone can create configuration, then there is the potential that Knox could consume and
apply malicious configuration. Measures need to be taken to ensure that the ability to create or modify configuration is limited to trusted actors. Once such
measure is the application of more restrictive ACLs.

An ACL specifies a set of znode permissions for a user. At the very least, write permissions should be limited to authenticated users. I would further
suggest that read permissions be similarly limited, since the gateway configuration does contain Hadoop cluster network details.

Fortunately, when the Knox ZooKeeper client is configured for authentication, the remote registry monitor will make appropriate changes to the ACLs for
the znodes with which it is concerned.

Try it!
HDP Sandbox (https://hortonworks.com/downloads/#sandbox)

Configure ZooKeeper JAAS
Create JAAS configuration (e.g., sasl-zk-jaas.conf) with content:

Server { org.apache.zookeeper.server.auth.DigestLoginModule required user_knox="knoxtest"; };

Edit (e.g., /usr/hdp/current/zookeeper-server/conf/zookeeper-env.sh), adding a reference to the JAAS config you just zookeeper-env.sh
created

export SERVER_JVMFLAGS="-Xmx1024m -Djava.security.auth.login.config=/sasl-zk-jaas.conf

Edit (e.g., /usr/hdp/current/zookeeper-server/conf/zoo.cfg), adding the following:zoo.cfg

authProvider.1=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
requireClientAuthScheme=sasl

Restart ZooKeeper (e.g., '/usr/hdp/current/zookeeper-server/bin/zkServer.sh start')

 Create the Knox configuration znodes
Create a client JAAS config (e.g., sasl-zk-client-jaas.conf)

Client {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 username="knox"
 password="knoxtest";
}

 export CLIENT_JVMFLAGS=-Djava.security.auth.login.config=/sasl-zk-client-jaas.conf

 /bin/zkCli.sh -server :2181{ZOOKEEPER_HOME} sandbox.hortonworks.com

create /knox "1"
create /knox/config "1"
create /knox/shared-providers "1"
create /knox/config/descriptors "1"
setAcl /knox/config/shared-providers sasl:knox:cdrwa
setAcl /knox/config/descriptors sasl:knox:cdrwa

Configure the client in (no authentication config)/conf/gateway-site.xml{GATEWAY_HOME}

<property>
 <name>gateway.remote.config.registry.sandbox-zookeeper-client</name>
 <value>type=ZooKeeper;address=localhost:2181</value>
 <description>ZooKeeper configuration registry client details.</description>
</property>

http://knox.apache.org/books/knox-0-14-0/user-guide.html#Alias+creation
http://knox.apache.org/books/knox-0-14-0/user-guide.html#Remote+Configuration+Registry+Clients
https://hortonworks.com/products/sandbox
http://sandbox.hortonworks.com/

4.

5.

6.

7.

8.

bin/knoxcli.sh registry client should not work because of no authentication

/bin/knoxcli.sh upload-descriptor mysandbox.yml --registry-client sandbox-zookeeper-client{GATEWAY_HOME}

Create the ZK auth password alias

/bin/knoxcli.sh create-alias sandbox-zk-pwd --value knoxtest{GATEWAY_HOME}

 Add auth to the client config in /conf/gateway-site.xml{GATEWAY_HOME}

<property>
 <name>gateway.remote.config.registry.sandbox-zookeeper-client</name>
 <value>type=ZooKeeper;address=localhost:2181 </value>;authType=Digest;principal=knox;credentialAlias=sandbox-zk-pwd
 <description>ZooKeeper configuration registry client details.</description>
</property

 registry client should succeed now that authentication is configuredbin/knoxcli.sh

/bin/knoxcli.sh upload-descriptor mysandbox.yml --registry-client sandbox-zookeeper-client{GATEWAY_HOME}

Summary
Hopefully, this helps provide some understanding of what is required to secure the interactions between the gateway and Apache ZooKeeper.

The [Remote Configuration Registry Clients]() section http://knox.apache.org/books/knox-0-14-0/user-guide.html#Remote+Configuration+Registry+Clients
of the [User Guide]() provides more information, including the details necessary to configure http://knox.apache.org/books/knox-0-14-0/user-guide.html
Kerberos authentication for these interactions.

Bonus Tip
If you get in a bad place with respect to ACLs and authentication errors, you can configure super user support:

1. export ZK_CLASSPATH=/etc/zookeeper/conf/:/usr/hdp/current/zookeeper-server/lib/*:/usr/hdp/current/zookeeper-server/*

2. java -cp $ZK_CLASSPATH org.apache.zookeeper.server.auth.DigestAuthenticationProvider super:superpwd

(super:superpwd->super:)G+ys1zTeJy/1iLhgQS08pRQoMvo=

3. SERVER_JVMFLAGS=-Dzookeeper.DigestAuthenticationProvider.superDigest=super:G+ys1zTeJy/1iLhgQS08pRQoMvo=

4. Restart ZooKeeper

http://knox.apache.org/books/knox-0-14-0/user-guide.html#Remote+Configuration+Registry+Clients
http://knox.apache.org/books/knox-0-14-0/user-guide.html

	Secure ZooKeeper Client in Apache Knox

